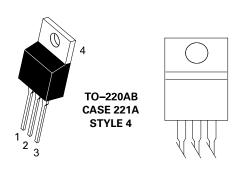


BTB16-600BW3G, BTB16-700BW3G, BTB16-800BW3G


Description

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 16 Amperes RMS at 80°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt - 1500 V/µs minimum at
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/ dt - 7.5. A/ms minimum at 125°C
- These are Pb-Free **Devices**

Pin Out

Functional Diagram

Additional Information

Resources

Samples

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Thyristors

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = -40^{\circ}$ to 150°C)	BTB16-600BW3G BTB16-700BW3G BTB16-800BW3G	V _{DRM} , V _{RRM}	600 700 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _c = 80°C)		I _{T (RMS)}	16	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)		I _{TSM}	170	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	120	A²sec
Non-Repetitive Surge Peak Off-State Voltage ($T_J = 25^{\circ}\text{C}$, t = 10 ms)		V_{DSM}/V_{RSM}	V _{DSM} /V _{RSM} +100	V
Peak Gate Current (T _J = 125°C, t = 20ms)		I _{GM}	4.0	W
Average Gate Power (T _J = 125°C)		P _{G(AV)}	1.0	W
Operating Junction Temperature Range		T _J	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied.

Thermal Characteristics

Rating	ı	Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	1.9 60	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T_{L}	260	°C

Electrical Characteristics - OFF (T, = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T, = 25°C	I _{DRM} ,	-	-	0.005	m 1
$(V_D = V_{DRM} = V_{RRM}, Gate Open)$	T _J = 125°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - **ON** (T_J = 25°C unless otherwise noted; Electricals apply in both directions)

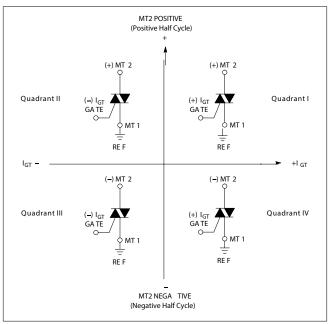
Characteristic	Symbol	Min	Тур	Max	Unit	
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A Peak}$)		V_{TM}	-	-	1.55	V
	MT2(+), G(+)		2.5	_	50	
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	I _{GT}	2.5	-	50	mA
	MT2(-), G(-)		2.5	_	50	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 100 \text{ mA}$)		I _H	_	_	60	mA
	MT2(+), G(+)	I _L	-	-	70	
Latching Current ($V_D = 24 \text{ V}$, $I_G = 60 \text{ mA}$)	MT2(+), G(-)		_	-	90	mA
	MT2(-), G(-)		_	-	70	
	MT2(+), G(+)		0.5	-	1.7	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	V _{GT}	0.5	_	1.1	V
	MT2(-), G(-)		0.5	_	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	$V_{\rm GD}$	0.2	_	-	V
	MT2(-), G(-)		0.2	_	_	

2. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{RBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Dynamic Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125$ °C, No Snubber)	(dl/dt)c	7.5	_	_	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125$ °C, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, $tr \le 100$ ns)	dl/dt	_	_	50	A/µs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM}, Exponential Waveform, Gate Open, T_J = 125°C)$	dV/dt	1500	-	-	V/µs

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Thyristors

Quadrant Definitions for a Triac

All polarities are referenced to MT1. With in–phase signals (using standard AC lines) quadrants I and III are used

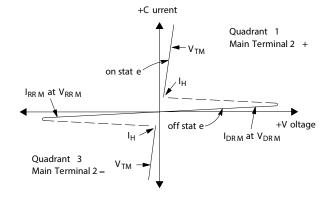
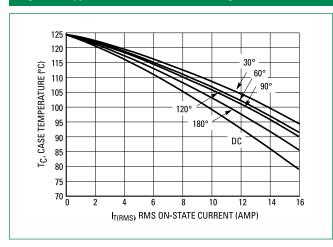
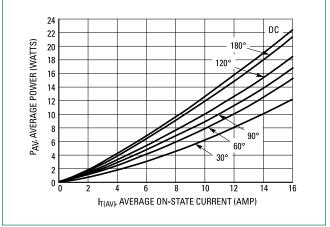
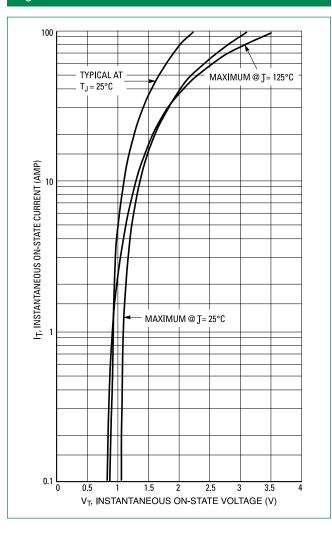
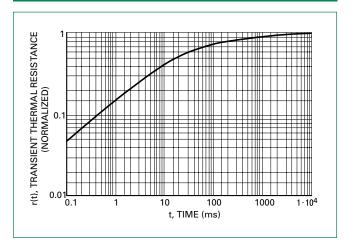



Figure 2. On-State Power Dissipation

Figure 1. Typical RMS Current Derating

Thyristors

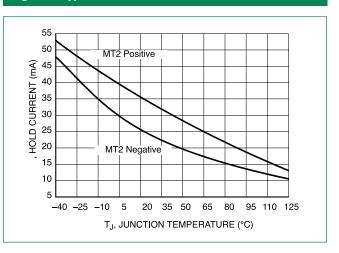

Figure 3. On-State Characteristics

Figure 4. Thermal Response

Figure 5. Typical Hold Current Variation

Thyristors

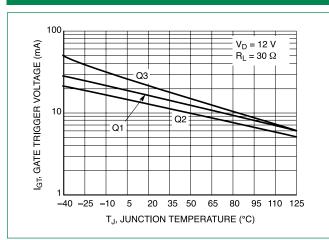
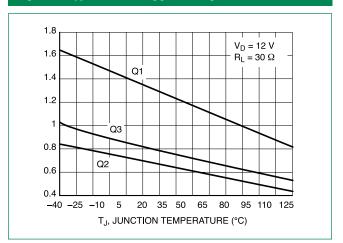
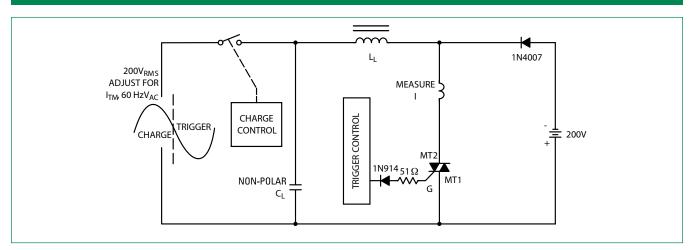
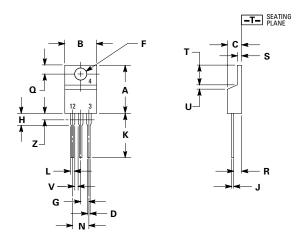
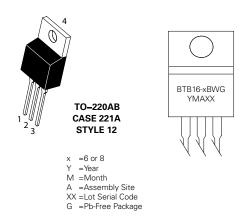


Figure 7. Typical Gate Trigger Voltage Variation


Figure 8. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Dimensions

Part Marking System

D:	Inc	hes	Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z	_	0.080	_	2.04

Pin Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	No Connection			

O	rd	eri	ng	lni	orı	mat	tior	1

Device	Package	Shipping
BTB16-600BW3G	TO-220AB (Pb-Free)	500 Units / Rail
BTB16-700BW3G	TO-220AB (Pb-Free)	500 Units / Rail
BTB16-800BW3G	TO-220AB (Pb-Free)	500 Units / Rail

^{1.} DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

^{2.} CONTROLLING DIMENSION: INCH.

^{3.} DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

BTB16H-600BW3G