

CGH35060F2/P2

60 W, 3.1 - 3.5 GHz, 28 V, GaN HEMT

Description

The CGH35060F2/P2 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH35060F2/P2 ideal for 3.1 - 3.5 GHz S-band pulsed amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package.

Package Types: 440193 & 440206 PNs: CGH35060F2 & CGH35060P2

Typical Performance Over 3.1-3.5 GHz (T_c = 25°C) of Demonstration Amplifier

Parameter	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	12.0	13.2	11.5	dB
P _{OUT} @ P _{IN} = 36.5 dBm	47.0	47.6	46.7	dBm
Gain @ P _{IN} = 36.5 dBm	10.4	11.06	10.1	dB
Drain Efficiency @ P _{IN} = 36.5 dBm	55.0	62.0	62.0	%
Input Return Loss	-7.3	-17.0	-4.3	dB

Measured in the CGH35060F2-AMP amplifier circuit, under 100µs Pulse Width, 20% Duty Cycle and 28 V.

Features

- 3.1 3.5 GHz Operation
- 60 W Peak Power Capability
- 12 dB Small Signal Gain
- 60% Drain Efficiency

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-55, +150	°C	
Operating Junction Temperature	Tυ	225	- 1	
Maximum Forward Gate Current	I _{GMAX}	14.4	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	6	Α	25 C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case, Pulsed ³	R _{θJC}	1.67	°C/W	85°C, Pulse Width = 300%, Duty Cycle = 10%
Case Operating Temperature ³	T _C	-40, +150	°C	

Notes

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	V _{DS} = 10 V, I _D = 14.4 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	V _{DS} = 28 V, I _D = 200 mA
Saturated Drain Current	I _{DS}	10.1	14.0	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	84	-	-	V _{DC}	V _{GS} = -8 V, I _D = 14.4 mA
RF Characteristics ^{2,3} ($T_c = 25^{\circ}C$, $F_0 =$	3.3 GHz ur	iless oth	erwise n	oted)		
Small Signal Gain	Gss	11.0	13.0	-	dB	V _{DD} = 28 V, I _{DQ} = 200 mA
Drain Efficiency⁴	η	40	62	-	%	V - 20 V I - 200 mA B - 26 F W
Power Output⁴	Роит	45.6	47.6	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}, P_{IN} = 36.5 \text{ W}$
Output Mismatch Stress	VSWR			10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, $P_{OUT} = 60 \text{ W}$ Pulse
Dynamic Characteristics						
Input Capacitance	C _{GS}	-	19.0	_		
Output Capacitance	C _{DS}		5.9	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	$C_{\sf GD}$	_	0.8	-		

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{3}}$ Measured for the CGH35060F2 at $P_{DISS} = 57.6$ W.

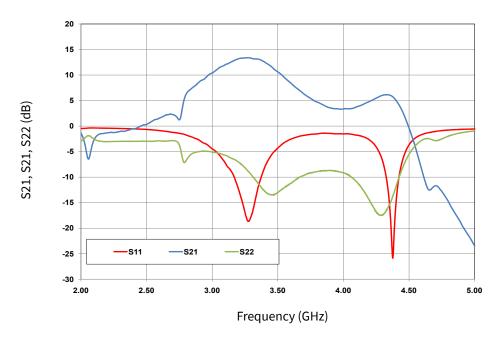
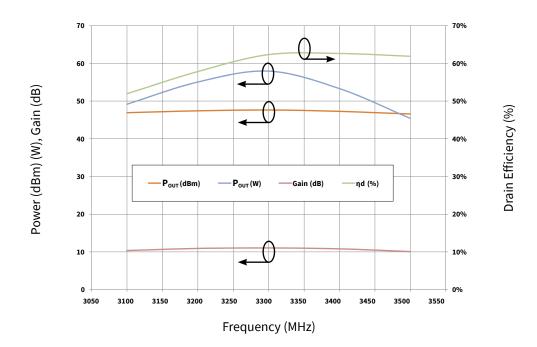
¹ Measured on wafer prior to packaging.

² Measured in the CGH35060F2-AMP test fixture

³ 100μs Pulse Width at 20% Duty Cycle

 $^{^{4}}$ Drain Efficiency = P_{OUT} / P_{DC}

Typical Performance

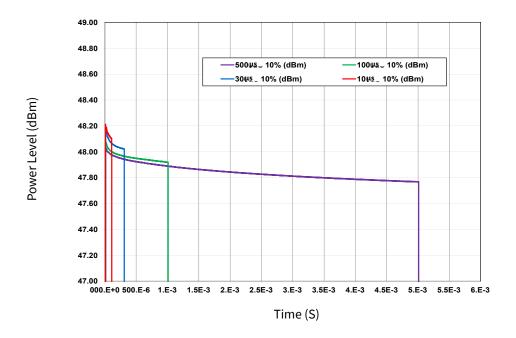

Figure 1. Small Signal Gain and Return Losses vs Frequency of the CGH35060F2 and CGH35060P2 V_{DD} = 28 V, I_{DO} = 200 mA

Figure 2. Output Power, Gain and Drain Efficiency vs Frequency of the CGH35060F2 and CGH35060P2 V_{DD} = 28 V, I_{DQ} = 200 mA, Pulse Width = 100 μ sec, Duty Cycle = 20%

Typical Pulse Droop Performance

Typical Performance

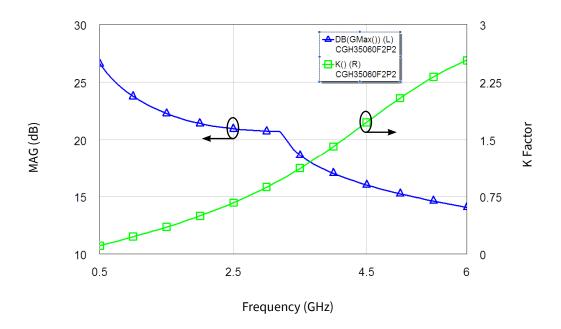
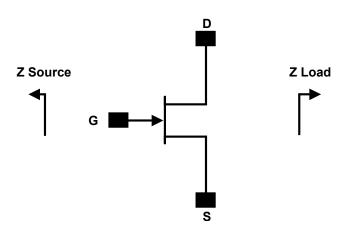



Figure 3. Simulated Maximum Available Gain and K Factor of the CGH35060F2 and CGH35060P2 $V_{DD}=28~V,~I_{DO}=200~mA$

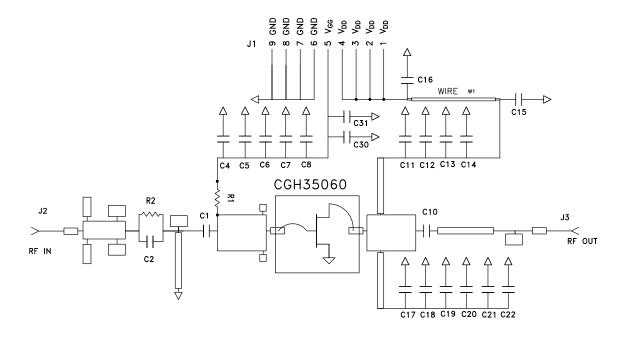
Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
3100	3.6 – j13.5	8.0 – j8.5
3200	3.6 - j12.8	7.1– j7.7
3300	3.5 – j12.1	6.5 – j6.8
3400	3.5 – j11.4	6.0 – j5.9
3500	3.3 – j10.7	5.6 – j5.1

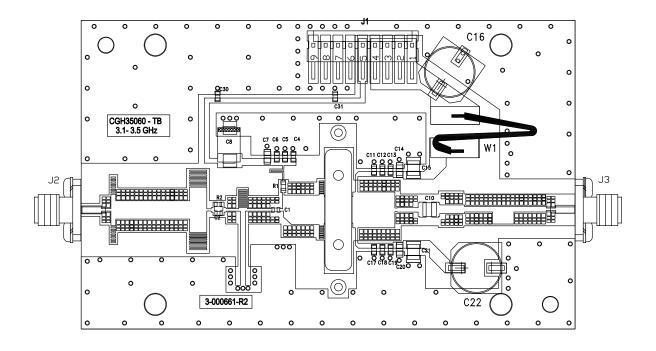
Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 C101-C

 $^{^{1}}$ V_{DD} = 28V, I_{DQ} = 200mA in the 440193 package 2 Impedances are extracted from the CGH35060F2-AMP demonstration amplifier and are not source and load pull data derived from the transistor

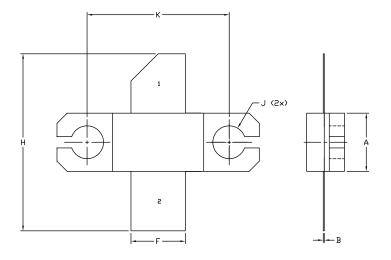


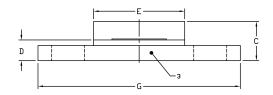
CGH35060F2-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 100 OHMS	1
C6, C13, C19	CAP, 470pF, +/-5%, 100 V, 0603	3
C16, C22	CAP, 33μF 100 V ELECT FK SMD	2
C15, C21	CAP, CER 1.0μF, 100 V, 10%, X7R 1210	2
C8	CAP, 10μF 16V SMT TANTALUM	1
C10	CAP, 20.0pF, +/-5%, 0603, ATC 100B	1
C1	CAP, 5.1pF, +/-5%, 0603, ATC 600S	1
C2	CAP, 3.0pF, +/-0.1pF, 0603, ATC 600S	1
C5, C12, C18, C30, C31	CAP, 4.7pF, 5%pF, 0603, ATC	5
C4, C11, C17	CAP, 7.5pF, 0.1pF, 0603, ATC	3
C7, C14, C20	CAP CER 33000pF, 0805, 100V, X7R	3
	РСВ	1
	BASEPLATE	1
J2, J3	CONN, SMA, PANEL MOUNT JACK	2
J1	HEADER RT>PLZ .1CEN LK 9POS	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
W1	WIRE, BLACK, 22 AWG ~ 2.0"	1
Q1	CGH35060F2	1

CGH35060F2-AMP Demonstration Amplifier Circuit Schematic

CGH35060F2-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH35060F2/P2, (Small Signal, V_{DS} = 28 V, I_{DQ} = 200 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.927	-170.09	7.16	79.27	0.016	-6.59	0.596	-168.07
600 MHz	0.928	-172.55	5.95	75.10	0.016	-9.91	0.605	-168.34
700 MHz	0.929	-174.46	5.08	71.25	0.015	-12.90	0.615	-168.44
800 MHz	0.930	-176.04	4.42	67.64	0.015	-15.66	0.626	-168.49
900 MHz	0.931	-177.39	3.91	64.20	0.015	-18.24	0.637	-168.54
1.0 GHz	0.932	-178.59	3.50	60.90	0.015	-20.65	0.648	-168.63
1.1 GHz	0.933	-179.70	3.16	57.72	0.015	-22.94	0.659	-168.78
1.2 GHz	0.935	179.27	2.88	54.66	0.014	-25.10	0.670	-168.99
1.3 GHz	0.936	178.29	2.65	51.70	0.014	-27.14	0.681	-169.25
1.4 GHz	0.937	177.34	2.45	48.83	0.014	-29.08	0.692	-169.58
1.5 GHz	0.938	176.41	2.28	46.04	0.013	-30.91	0.702	-169.96
1.6 GHz	0.939	175.49	2.13	43.33	0.013	-32.65	0.712	-170.40
1.7 GHz	0.940	174.57	2.00	40.70	0.013	-34.29	0.721	-170.87
1.8 GHz	0.941	173.65	1.88	38.13	0.013	-35.85	0.730	-171.39
1.9 GHz	0.942	172.73	1.78	35.62	0.012	-37.32	0.738	-171.94
2.0 GHz	0.943	171.79	1.69	33.16	0.012	-38.70	0.746	-172.53
2.1 GHz	0.943	170.83	1.62	30.76	0.012	-40.01	0.753	-173.14
2.2 GHz	0.944	169.85	1.55	28.40	0.012	-41.25	0.760	-173.78
2.3 GHz	0.944	168.85	1.49	26.07	0.012	-42.41	0.766	-174.44
2.4 GHz	0.944	167.82	1.44	23.78	0.011	-43.51	0.772	-175.12
2.5 GHz	0.945	166.75	1.39	21.52	0.011	-44.55	0.777	-175.82
2.6 GHz	0.944	165.64	1.35	19.27	0.011	-45.52	0.781	-176.54
2.7 GHz	0.944	164.49	1.32	17.03	0.011	-46.44	0.785	-177.27
2.8 GHz	0.944	163.29	1.29	14.80	0.011	-47.31	0.789	-178.03
2.9 GHz	0.943	162.03	1.26	12.57	0.011	-48.13	0.792	-178.80
3.0 GHz	0.943	160.71	1.24	10.34	0.010	-48.92	0.795	-179.59
3.2 GHz	0.941	157.85	1.22	5.80	0.010	-50.38	0.798	178.78
3.4 GHz	0.938	154.62	1.21	1.13	0.010	-51.75	0.800	177.06
3.6 GHz	0.934	150.94	1.21	-3.76	0.010	-53.09	0.800	175.23
3.8 GHz	0.928	146.65	1.24	-8.97	0.010	-54.51	0.798	173.28
4.0 GHz	0.921	141.58	1.28	-14.63	0.011	-56.12	0.794	171.18
4.2 GHz	0.911	135.46	1.35	-20.90	0.011	-58.11	0.787	168.89
4.4 GHz	0.897	127.93	1.45	-28.01	0.012	-60.71	0.777	166.35
4.6 GHz	0.880	118.44	1.57	-36.26	0.012	-64.27	0.764	163.51
4.8 GHz	0.857	106.23	1.73	-46.04	0.014	-69.22	0.746	160.26
5.0 GHz	0.828	90.20	1.93	-57.83	0.015	-76.13	0.723	156.46
5.2 GHz	0.796	69.08	2.15	-72.17	0.017	-85.57	0.692	151.91
5.4 GHz	0.770	42.01	2.35	-89.39	0.018	-97.96	0.649	146.29
5.6 GHz	0.766	10.14	2.48	-109.22	0.019	-113.08	0.590	139.24
5.8 GHz	0.793	-22.34	2.47	-130.55	0.020	-129.85	0.509	130.26
6.0 GHz	0.839	-50.86	2.33	-152.01	0.019	-146.93	0.401	118.41

To download the s-parameters in s2p format, go to the CGH35060F2/P2 Product Page.

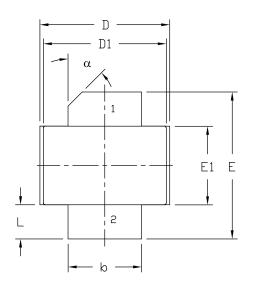
Product Dimensions CGH35060F2 (Package Type — 440193)

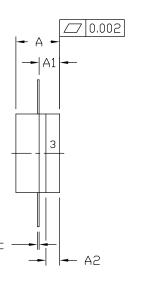
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
С	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
E	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.670	0.730	17.02	18.54	
J	ø .130		3.30		
k	0.5	62	14.28		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH35060P2 (Package Type — 440206)

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INC	HES	MILLIM	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
Е	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45°	REF	45°	REF	

- PIN 1. GATE
 - 2. DRAIN
 - 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH35060F2	GaN HEMT (Flanged)	Each	CCH OCO OCO N
CGH35060P2	GaN HEMT (Pill)	Each	CCH8508012
CGH35060F2-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CGH35060F2 CGH35060F2-AMP CGH35060P2