

NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/366

DESCRIPTION

This family of 2N3498 thru 2N3501 epitaxial planar transistors are military qualified up to a JANS level for high-reliability applications. These devices are also available in TO-5 and low profile U4 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3498 through 2N3501 series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/366. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.

MAXIMUM RATINGS

Parameters / Test Conditions		Symbol	2N3498 2N3499	2N3500 2N3501	Unit
Collector-Emitter Voltage		V _{CEO}	100	150	V
Collector-Base Voltage		V _{CBO}	100	150	V
Emitter-Base Voltage		V_{EBO}	6.0	6.0	V
Collector Current		Ιc	500	300	mA
Thermal Resistance Junction-to-Ambient		$R_{\Theta JA}$	175		°C/W
Thermal Resistance Junction-to-Case		R _{ejc}	30		°C/W
Total Power Dissipation	@ $T_A = +25 °C^{(1)}$ @ $T_C = +25 °C^{(2)}$	PT	1.0 5.0		W
Operating & Storage Junction Temperature Range		T _J , T _{stg}	-65 to +200		°C

Notes: 1. See figure 1.

2. See figure 2.

<u>Qualified Levels</u>: JAN, JANTX, JANTXV and JANS

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N3498L – 2N3501L

U4 package (surface mount) 2N3498U4 – 2N3501U4

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
C _{obo}	Common-base open-circuit output capacitance				
I _{CEO}	Collector cutoff current, base open				
I _{CEX}	Collector cutoff current, circuit between base and emitter				
I _{EBO}	Emitter cutoff current, collector open				
h _{FE}	Common-emitter static forward current transfer ratio				
V _{CEO}	Collector-emitter voltage, base open				
V _{CBO}	Collector-emitter voltage, emitter open				
V _{EBO}	Emitter-base voltage, collector open				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Characteristic		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_{C} = 10 \text{ mA}, \text{ pulsed}$	2N3498, 2N3499	V _{(BR)CEO}	100		V
	2N3500, 2N3501		150		
Collector-Base Cutoff Current					
$V_{CB} = 50 V$	2N3498, 2N3499	I _{CBO}		50	nA
V _{CB} = 75 V	2N3500, 2N3501			50	nA
V _{CB} = 100 V	2N3498, 2N3499			10	μA
V _{CB} = 150 V	2N3500, 2N3501			10	μA
Emitter-Base Cutoff Current					
$V_{EB} = 4.0 V$		I _{EBO}		25	nA
V _{EB} = 6.0 V				10	μA

ON CHARACTERISTICS (1)

				1	
Forward-Current Transfer Ratio					
$I_{\rm C} = 0.1 \text{ mA}, V_{\rm CE} = 10 \text{ V}$	2N3498, 2N3500	h _{FE}	20		
	2N3499, 2N3501		35		
$I_{\rm C} = 1.0 \text{ mA}, V_{\rm CF} = 10 \text{ V}$	2N3498, 2N3500		25		
	2N3499, 2N3501		50		
$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 10 \text{ V}$	2N3498, 2N3500		35		
$i_{\rm C} = 10$ IIIA, $v_{\rm CE} = 10$ v	2N3499, 2N3501		75		
	2N3498, 2N3500		40	120	
I _C = 150 mA, V _{CE} = 10 V	2N3498, 2N3500 2N3499, 2N3501		100	300	
	,		15		
I _C = 300 mA, V _{CE} = 10 V	2N3500		20		
	2N3501		15		
$I_{\rm C} = 500 \text{ mA}, V_{\rm CE} = 10 \text{ V}$	2N3498		-		
	2N3499		20		
Collector-Emitter Saturation Voltage					
$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$	All Types	V _{CE(sat)}		0.2	V
$I_{\rm C} = 300 \text{ mA}, I_{\rm B} = 30 \text{ mA}$	2N3498, 2N3499	()		0.6	
$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$	2N3500, 2N3501			0.4	
G , D	2110000, 2110001			-	
Base-Emitter Saturation Voltage					
$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA	All Types	V _{BE(sat)}		0.8	V
I _C = 300 mA, I _B = 30 mA	2N3498, 2N3499			1.4	
$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$	2N3500, 2N3501			1.2	

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio, Magnitude $I_{C} = 20 \text{ mA}, V_{CE} = 20 \text{ V}, f = 100 \text{ MHz}$		h _{fe}	1.5	8.0	
$\begin{array}{l} \mbox{Output Capacitance} \\ \mbox{V}_{CB} = 10 \mbox{ V, } \mbox{I}_{E} = 0, \\ \mbox{100 kHz} \le \mbox{f} \le 1.0 \mbox{ MHz} \end{array} \qquad \begin{array}{l} \mbox{2N3498, 2N3499} \\ \mbox{2N3500, 2N3501} \end{array}$		C _{obo}		10 8.0	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		C _{ibo}		80	pF

(1) Pulse Test: pulse width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

SWITCHING CHARACTERISTICS

Characteristic	Symbol	Min.	Max.	Unit
Turn-On Time V _{FB} = 5 V; I _C = 150 mA; I _{B1} = 15 mA	ton		115	ns
Turn-Off Time	t "		1150	20
I _C = 150 mA; I _{B1} = I _{B2} = -15 mA	'off		1150	ns

SAFE OPERATING AREA (See SOA figure and reference MIL-STD-750 method 3053)

DC Tests	
$T_{C} = +25 \ ^{\circ}C, t_{r} \ge 10 \text{ ns}; 1 \text{ Cycle}, t =$	1.0 s
Test 1	
$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 500 \text{ mA}$	2N3498, 2N3499
V _{CE} = 16.67 V, I _C = 300 mA	2N3500, 2N3501
Test 2	
$V_{CE} = 50 \text{ V}, I_{C} = 100 \text{ mA}$	All Types
Test 3	
$V_{CE} = 80 \text{ V}, I_{C} = 40 \text{ mA}$	All Types
Clamped Switching	
$T_A = +25 \ ^{\circ}C$	
Test 1	
$I_{\rm B} = 85 \text{ mA}, I_{\rm C} = 500 \text{ mA}$	2N3498, 2N3499
$I_{B} = 50 \text{ mA}, I_{C} = 300 \text{ mA}$	2N3500, 2N3501

GRAPHS

Derating for all devices (R_{0JA})

FIGURE 2 Derating for all devices (R_{0JC})

GRAPHS

Thermal Impedance Graph (R_{θJC})

PACKAGE DIMENSIONS

Symbol	In	ch	Millimeters		Note
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
LC	0.20	0 TP	5.08	5 TP	6
LD	0.016	0.021	0.41	0.53	7
LL	5	See notes 7, 12 and 13			
LU	0.016	0.019	0.41	0.48	7, 13
L1		0.050		1.27	13
L2	0.250		6.35		13
Р	0.100		2.54		5
Q		0.050		1.27	4
TL	0.029	0.045	0.74	1.14	3
TW	0.028	0.034	0.71	0.86	10, 11
r		0.010		0.25	11
α	45	45° TP		45° TP	

Dimensions

NOTES:

- 1. Dimension are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- 5. Symbol CD shall not vary more than .010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) -.000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) relative to tab. Device may be measured by direct methods or by gauge.
- 7. Symbol LD applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Lead diameter shall not exceed .042 inch (1.07 mm) within L1 and beyond LL minimum.
- 8. Lead designation, shall be as follows: 1 emitter, 2 base, 3 collector.
- 9. Lead number three is electrically connected to case.
- 10. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 11. Symbol r applied to both inside corners of tab.
- For transistor types 2N3498, 2N3499, 2N3500, and 2N3501, LL = .50 inch (12.7 mm) minimum and .750 inch (19.1 mm) maximum. For transistor types 2N3498L, 2N3499L, 2N3500L, and 2N3501L, LL = 1.50 inches (38.1 mm) minimum and 1.750 inches (44.5 mm) maximum.
- 13. All three leads.
- 14. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

<u>Jantx2N3500/TR</u> <u>Jantx2N3501L/TR</u> <u>Jan2N3500/TR</u> <u>JANS2N3501/TR</u> <u>Jantxv2N3500/TR</u> <u>Jantx2N3498/TR</u> <u>Jan2N3498/TR</u> <u>2N3501/TR</u> <u>Jan2N3501/TR</u> <u>Jan2N3501/TR</u> <u>Jantxv2N3499/TR</u> <u>Jantxv2N3499/TR</u> <u>Jantxv2N3499/TR</u> <u>Jantxv2N3498/TR</u> <u>2N3501</u>