

Specification for 3.1 inch EPD

Model NO.: MT-DEPG0310BNS800F2

This module uses ROHS material

С	USTOMER
APF	PROVED BY
DATE:	

Tel: 1 (888) 499-8477

Fax: (407) 273-0771

E-mail: mtusainfo@microtipsusa.com

Web: www.microtipsusa.com

Revision History

Version	Content	Date	Producer
2.0	New release	2020/11/12	
	4. Mechanical Drawing of EPD Module		
	3. Mechanical and Optical Specification		
2.1	13.Packaging	2022/10/21	
	11. Reliability Test		

CONTENTS

1. Over View	4
2. Features	4
3. Mechanical and Optical Specification	5
4.Mechanical Drawing of EPD Module	6
5. Input/output Pin Assignment	7
6. Electrical Characteristics	8
6.1 Absolute Maximum Rating	8
6.2 Panel DC Characteristics	9
6.3 Panel DC Characteristics(Driver IC Internal Regulators)	10
6.4 Panel AC Characteristics	10
6.4.1 MCU Interface Selection	10
6.4.2 MCU Serial Interface (4-wire SPI)	10
6.4.3 MCU Serial Interface (3-wire SPI)	12
6.4.4 Interface Timing	13
7.Command Table	15
8.Block Diagram	23
9. Typical Application Circuit with SPI Interface	24
10 Typical Operating Sequence	25
10.1 OTP Operation Flow	25
10.2 OTP Operation Reference Program Code	26
11. Reliability Test	27
12.Quality Assurance	28
12.1 Environment	28
12.2 Illuminance	28
12.3 Inspect method	28
12.4 Display area	28
12.5 Ghosting test method	28
12.6 Inspection standard	29
12.6.1 Electric inspection standard	
12.6.2 Appearance inspection standard	
14. Handling, Safety, and Environment Requirements	

1. Over View

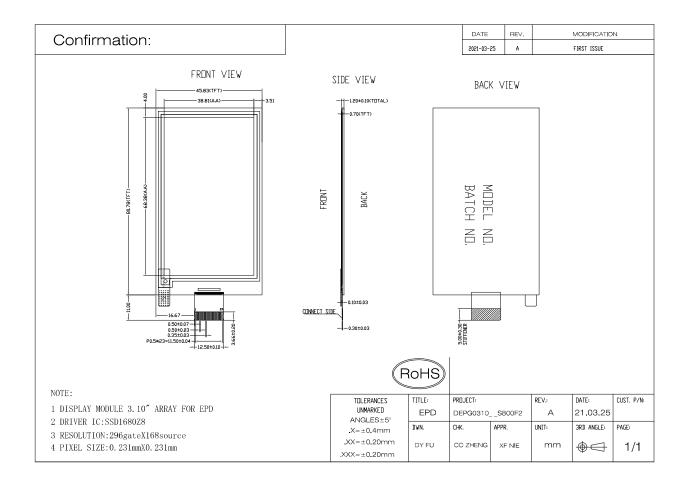
MT-DEPG0310BNS800F2 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 3.1 inch active area contains 168×296 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ◆168×296pixels display
- ◆ High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ♦Bi-stable display
- ◆Commercial temperature range
- ◆ Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ◆On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆1²C signal master interface to read external temperature sensor
- ◆ Support partial update mode
- ◆Built-in temperature sensor

3. Mechanical and Optical Specification

Parameter	Specifications	Unit	Remark
Screen Size	3.1	Inch	
Display Resolution	168(H)×296(V)	Pixel	DPI:110
Active Area	38.81×68.38	mm	
Pixel Pitch	0.231×0.231	mm	
Pixel Configuration	Rectangle		
Outline Dimension	45.83(H)×80.78 (V) ×1.20(D)	mm	
Weight	6.5±0.5	g	


Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
KS	Black State L* value		-	18	20		3-1
K2	Black Ghosting Δ L		-	1	-		3-1
WS	White State L* value		66	67			3-1
w S	White Ghosting △ L		_	1	-		3-1
R	White Reflectivity	White	30	34	-	%	3-1
CR	Contrast Ratio	Indoor	15:1	20:1	-		3-1
							3-2
GN	2Grey Level	-	-	-	-		
Life		Temp:23±3°C		Sygora			3-3
Life		Humidity:55 \pm 10%RH		5years			3-3

Notes: 3-1. Luminance meter: Eye-One Pro Spectrophotometer.

3-3. When the product is stored. The display screen should be kept white and face up.

^{3-2.} CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

4.Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage 2	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	Note 5-6
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	Note 5-6
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/Output), P = Power Pin, C = Capacitor Pin

- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

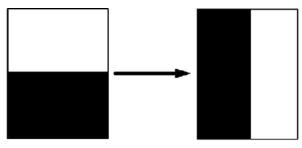
Note 5-6: This pin connect to the VSS if there is no external temperature sensor.

BS1 State	MCU Interface					
L	4-lines serial peripheral interface(SPI) - 8 bits SPI					
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI					

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C.
Storage Temp range	TSTG	-25 to+70	°C.
Optimal Storage Temp	TSTGo	23±3	°C.
Optimal Storage Humidity	HSTGo	55±10	RH


Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	Vih	-	-	0.8 Vci	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 Vci	V
High level output voltage	Vон	IOH = -100uA	-	0.9 Vci	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	P _{TYP}	V _{CI} =3.0V	-	-	10.5	-	mW
Deep sleep mode	PSTPY	VcI = 3.0V	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	V _{CI} =3.0V	-	-	3.5	-	mA
Image update time	-	25 °C	-	-	4	-	sec
Typical peak current	Iopr_VCI	2.2~3.7v			40	50	mA
Sleep mode current	Islp_Vc1	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical characteristics are only guaranteed under the controller & waveform provided by DKE.
- 4. Electrical measurement: Tektronix oscilloscope MDO3024,

Tektronix current probe - TCP0030A.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	ı	TBD	-	V
Positive Source output voltage	Vsh	-	S0~S167	+14.5	+15	+15.5	V
Negative Source output voltage	Vsl	-	S0~S167	-15.5	-15	-14.5	V
Positive gate output voltage	Vgh	-	G0~G295	+19	+20	+21	V
Negative gate output voltage	Vgl	-	G0~G295	-2 1	-20	-19	V

Notes:VGH,VGL,VSH,VSL drop voltage<2V.

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comm	and Interface	Control Signal		
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	↑

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

CS#

D/C#

SCL

SDA
(Write Mode)

Register

CS#

D7

D6

D5

D4

D3

D2

D1

D0

Parameter

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

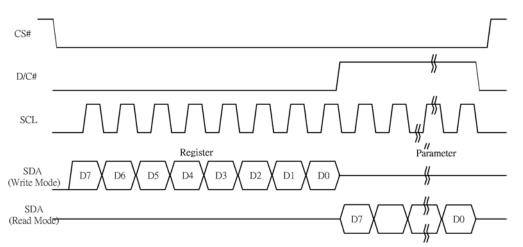


Figure 6-2: Read procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	1
Write data	L	Tie	1

Note: ↑ stands for rising edge of signal

SDA (Write Mode)

Register

Register

Register

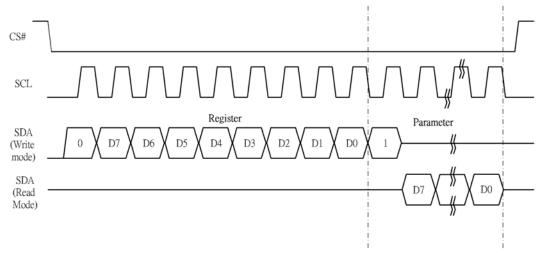

Register

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

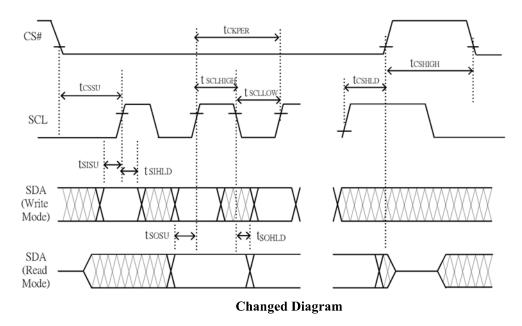

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, Topr =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIG H	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

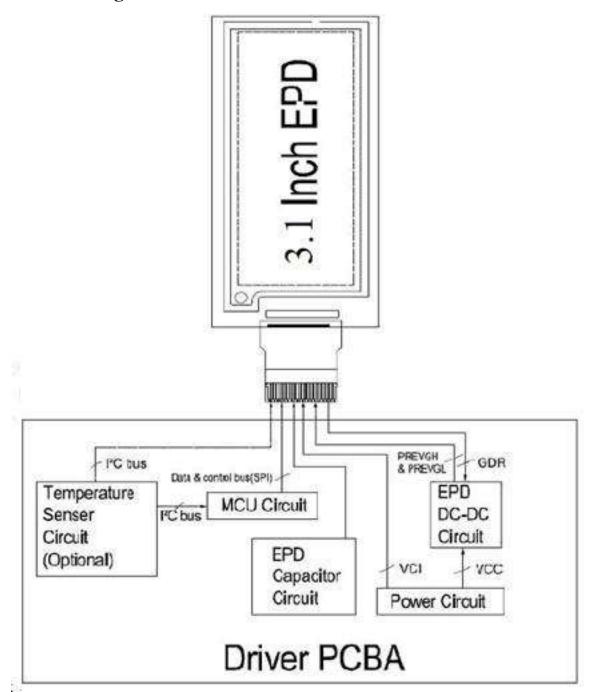
7. Command Table

			ш									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comman d	Description
0	0	01	0	0	0	0	0	0	0	1	Driver	Gate setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Output	Set A[8:0]=0127h
0	1		0	0	0	0	0	0	0	A8	control	Set B[8:0]=01h
0	1		0	0	0	0	0	В2	B1	В0		
0	0	03	0	0	0	0	0	0	1	1	Gate	SetGate Driving voltage
0	1		0	0	0	A4	A3	A2	A1	A0	Driving voltage control	A[4:0]=17h[POR],VGH at 20V[POR] VGH setting from 10V to 20V
0	0	04	0	0	0	0	0	1	0	0	Source	Set Source Driving voltage
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Driving	A[7:0]= 41h[POR], VSH1 at 15V
0	1		В7	В6	В5	B4	В3	B2	B1	В0	voltage control	B[7:0]=A Ch[POR], VSH2 at 5.4V C[7:0]= 32h[POR], VSL at -15V
0	1		C7	C6	C5	C4	C3	C2	C1	C0	Control	[C[7.0] = 32n[1 OK], VSL at -13 V
0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation
0	0	09	0	0	0	0	1	0	0	1	Write	Write Register for Initial Code Setting
0	1		A7	A6	A5	A4	A3	A2	A 1	A 0	Register	Selection
0	1		В7	В6	В5	В4	В3	В2	В1	В0	for Initial Code	A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C7	C6	C5	C4	C3	C2	C1	C0	Setting	Code Setting
0	1		D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting
0	0	10	0	0	0	1	0	0	0	0	Deep	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	0	A_0	Sleep mode	A[1:0]: Description 00 Normal Mode 01 Enter Deep Sleep Mode 1[POR] 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver

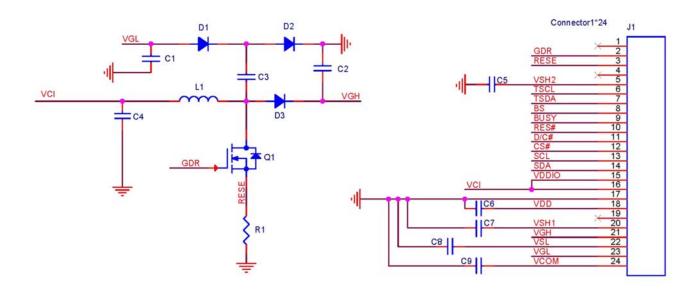
0	0	11	0	0	0	1	0	0	0	1	Data Entry	Define data entry sequence A[2:0] = 001 [POR]
											mode	A[1:0] = ID[1:0]
											setting	Address automatic increment / decrement
												setting
												The setting of incrementing or
												decrementing of the address counter can
0	1		0	0	0	0	0	A_2	A_1	A_0	1	be made independently in each upper and lower bit of the address.
	1		0	0		"	0	\mathbf{A}_2	Al	Au		00 - Y decrement, X decrement,
												01 - Y decrement, X increment, [POR]
												10 - Y increment, X decrement,
												11 - Y increment, X increment
												A[2] = AM
												Set the direction in which the address
												counter is updated automatically after data
												are written to the RAM.
												AM= 0, the address counter is updated in the X direction. [POR]
												AM = 1, the address counter is updated in
												the Y direction

0	0	0C	0	0	0	0	1	1	0	0	Booster	Booster Enable with Phase 1, Phase 2 and Phase 3
												for soft start current and duration setting.
											Control	A[7:0] -> Soft start setting for Phase1
												= 8Bh [POR]
												B[7:0] -> Soft start setting for Phase2
												= 9Ch [POR]
												C[7:0] -> Soft start setting for Phase3
												= 96h [POR]
												D[7:0] -> Duration setting
												= 0Fh [POR]
												Bit Description of each byte:
												A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4]
												Driving Strength
												Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0]
												Min Off Time Setting of GDR
												[Time unit]
												0000
												0011
												NA
												0100 2.6
												0101 3.2
												0110 3.9
0	1		1	A6	A5	A4	A3	A2	A1	A0		0111 4.6
0	1		1	В6	В5	В4	В3	B2	B1	В0		1000 5.4
										D.		1001 6.3
0	1		1	C6	C5	C4	C3	C2	C1	C0		1010 7.3
0	1		0	0	D5	D4	D3	D2	D1	Do		1010 7.3
	1			<u> </u>	درر	D4	נע	2رر	ועו	٥٦	_	1100 9.8
												1100 9.8
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase
1												D[5:4]: duration setting of phase 3
1												D[3:4]: duration setting of phase 3
1												D[1:0]: duration setting of phase 1
												Bit[1:0] duration setting of phase 1
												Duration of Phase
												[Approximation]
												00 10ms 01 20ms
												10 30ms
												11 40ms

0	0	12	0	0	0	1	0	0	1	0	SWRES ET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	18	0	0	0	1	1	0	0	0	_	Temperature Sensor Selection
0	1		A7	A6	A5	A4	A3	A2	A1	A0	ure Sensor Control	A[7:0] = 48h [POR], external temperature sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperat	Write to temperature register.
0	1		A7	A6	A5	A4	A3	A2	A1	A0	ure Sensor	A[11:0] = 7FFh [POR]
0	1		В7	В6	В5	B4	0	0	0	0	Control (Write to temperat ure register)l	
0	0	20	0	0	1	0	0	0	0	0	Master Activatio n	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display	RAM content option for Display Update
0	1		A7	A6	A5	A4	A3	A2	A 1	A0	Update	A[7:0] = 00h [POR]
0	1		В7	0	0	0	0	0	0	0	Condoi 1	B[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 Available Source from S0 to S175 1 Available Source from S8 to S167

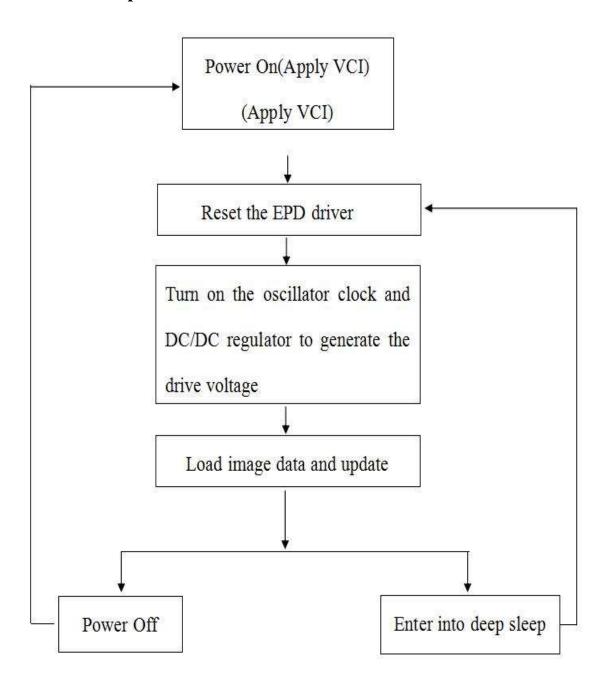

0	0	22	0	0	1	0	0	0	1	0	Display	Display Update Sequence Option:
											Update	Enable the stage for Master Activation
											Control 2	A[7:0]= FFh (POR)
												Operating sequence
												Parameter
												(in Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal
												Enable Clock Signal Enable Analog
												C0
												Disable Analog
												Disable clock signal
												03
												Enable clock signal
_										l	_	Load LUT with DISPLAY Mode 1
0	1		A7	A6	A5	A4	A3	A2	A1	A 0		Disable clock signal
												91
												Enable clock signal
												Load LUT with DISPLAY Mode 2
												Disable clock signal
												99
												Enable clock signal
												Load temperature value
												Load LUT with DISPLAY Mode 1
												Disable clock signal
												B1
												Enable clock signal
												Load temperature value
												Load LUT with DISPLAY Mode 2
												Disable clock signal
												В9
												Enable clock signal
												Enable Analog
												Display with DISPLAY Mode 1
												Disable Analog
												Disable OSC
												C7
												Enable clock signal
												Enable Analog
												Display with DISPLAY Mode 2
												Disable Analog
												Disable OSC
												CF CF
												Enable clock signal
												1
												Enable Analog
												Load temperature value
												DISPLAY with DISPLAY Mode 1
												Disable Analog
												Disable OSC
												F7
												Enable clock signal
												Enable Analog
												Load temperature value
												DISPLAY with DISPLAY Mode 2
												Disable Analog

0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	2C	0	0	1	0	1	1	0	0	Write	Write VCOM register from MCU interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0	VCOM register	A[7:0] = 00h [POR]
0	0	2D	0	0	1	0	1	1	0	l	OTP	Read Register for Display Option:
1	1		A7	A6	A5	A4	A3	A2	A 1	A 0	Register	A[7:0]: VCOM OTP Selection
1	1		В7	В6	В5	B4	В3	B2	B1	В0	Read for Display	(Command 0x37, Byte A) B[7:0]: VCOM Register
1	1		C7	C6	C5	C4	С3	C2	C1	C0	Option	(Command 0x2C)
1	1		D7	D6	D5	D4	D3	D2	D1	D0		C[7:0]~G[7:0]: Display Mode
1	1		E7	E6	E5	E4	E3	E2	E1	E0		(Command 0x37, Byte B to Byte F)
1	1		F7	F6	F5	F4	F3	F2	F1	F0		[5 bytes] H[7:0]~K[7:0]: Waveform Version
1	1		G7	G6	G5	G4	G3	G2	G1	G0		(Command 0x37, Byte G to Byte J)
1	1		H7	Н6	H5	H4	Н3	H2	H1	Н0		[4 bytes]
1	1		I7	I6	15	I4	I3	I2	I1	I0		
1	1		J7	J6	J5	J4	J3	J2	J1	J0		
1	1		K7	K6	K5	K4	К3	K2	K1	K0		
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively


0	0	30	0	0	1	1	0	0	0	0		Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation
0	0	32	0	0	1	1	0	0	1	0	Write	Write LUT register from MCU interface
0	1		A7	A6	A5	A4	A3	A2	A 1	A 0	LUT	[153 bytes], which contains the content of
0	1		В7	В6	В5	В4	В3	B2	B1	В0	register	VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1		:	:	:	:	:	:	:	:		Refer to Session 6.7 WAVEFORM
0	1		:	:		:	:	:	:	:		SETTING
0	1		:	:		:	:	:	:	:		
0	1		:	:	:	:	:	:	:	:		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences
0	0	3C	0	0	1	1	1	1	0	0		Select border waveform for VBD A[7:0] = C0h [POR], set VBD as HIZ.

0	1		A ₇	A ₆	As	A4	0	0	Aı	A_0		A [7:6] :Select VBD option A[7:6] Select VBD as 00 GS Transition, Defined in A[2] and A[1:0] 01 Fix Level, Defined in A[5:4] 10 VCOM 11[POR] HiZ A [5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH1 10 VSL 11 VSH2 A[2] GS Transition control A[2] GS Transition control 0 Follow LUT (Output VCOM @ RED) 1 Follow LUT A [1:0] GS Transition setting for VBD A[1:0] VBD Transition 00 LUT0 01 LUT1 10 LUT2
											~	11 LUT3
0	0	44	0	1	0	0	0	1	0	0	Set RAM X -	Specify the start/end positions of the window address in the X direction by an address unit
0	1		0	0	0	A ₄	A ₃	A ₂	A ₁	A ₀	address	A[4:0]: $XSA[4:0]$, X Start, $POR = 00h$
0	1		0	0	0	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	B_0	Start / End position	B[4:0]: XEA[4:0], X End, POR = 14h
0	0	45	0	1	0	0	0	1	0	1		Specify the start/end positions of the window
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Y-	address in the Y direction by an address unit
0	1		0	0	0	0	0	0	0	A_8	address Start /	A[8:0]: YSA[8:0], Y Start, POR = 0127h B[8:0]: YEA[8:0], Y End, POR = 0000h
0	1		B ₇	B_6	B ₅	B ₄	B ₃	B_2	B_1	B_0	End	Eleva, 1 Drigovoj, 1 Drid, 1 Orc vovon
0	1		0	0	0	0	0	0	0		position	
0	0	4E	0	1	0	0	1	1	1	0	Set RAM	Make initial settings for the RAM X address in
0	1		0	0	0	A ₄	A ₃	A_2	A_1	A_0	X address counter	the address counter (AC) A[4:0]: XAD[4:0], POR is 00h
0	0	4F	0	1	0	0	1	1	1	1		Make initial settings for the RAM Y address in
0	1		A ₇	A_6	A ₅	A ₄	A ₃	A_2	\mathbf{A}_1	A_0	Y address	the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈	counter	A[8:0]: YAD[8:0], POR is 0127h

8.Block Diagram


9. Typical Application Circuit with SPI Interface

Part Name	Value	Reference Part		Requirements for spare part					
C4 C6	1uF	0603;X5R/X7R;Voltage Rating:6v or 25v							
C1 C2 C3 C5 C7 C8	1uF	0603/0805; 2	X5R/X7R;Voltage	Rating:25v					
С9	0.47uF/1uF	0603/0805 NOTE: Effective c	5; X7R;Voltage Ra apacitance >0.25u						
R1	2.2Ohm		0805; 1%						
D4 D5 D6	Diode	MBR0530	2)Io=500mA	Voltage=30V(max) ege =430mV(max)					
Q1	NMOS	Si1304BDL/NX3008N13K		breakdown voltage =30v(min) v(Typ), 1.3v(Max) @ Vgs=2.5v					
L2	47UH	CDRH2D18/LDNP-470NC 1) Io=500(max)							

10 Typical Operating Sequence

10.1 OTP Operation Flow

10.2 OTP Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT		
POWER ON				
delay 10ms				
	PIN CONFIG			
RES#	low	Hardware reset		
delay	200us			
RES#	high			
delay	200us			
Read busy pin		Wait for busy low		
Command 0x12		Software reset		
Read busy pin		Wait for busy low		
SET VOLTAGE AND LOAD LUT				
	I OAD IMACE AND I	IDDATE		
LOAD IMAGE AND UPDATE				
Command 0x24	6216bytes	Load BW image (168/8*296)		
Command 0x20				
Read busy pin		Wait for busy low		
Command 0x10	Data 0X01	Enter deep sleep mode		
POWER OFF				

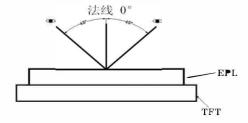
11. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=+70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=+50°C, RH=30%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=90%, 240h
6	High Temperature, High Humidity Storage	T=60°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles Test in white pattern
8	ESD Gun	Air+/-4KV;Contact+/-2KV Contact+/-2KV(HBMC:100pF;R:1.5k ohm) Contact+/-200V(MMC:200pF;R:0 ohm) (Naked EPD display,including IC and FPC area)
9	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern

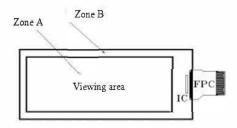
Note: 1. Stay white pattern for storage and non-operation test.

2. Operation is black→white pattern, the interval is 150s.

12.Quality Assurance

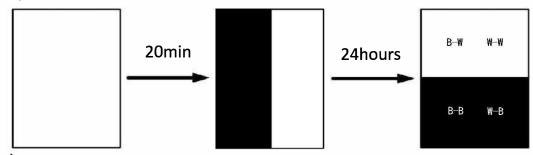

12.1 Environment

Temperature: 23 ± 3 °C Humidity: 55 ± 10 %RH


12.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45°surround.

12.3 Inspect method



12.4 Display area

12.5 Ghosting test method

Two-color ghosting is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern. The listed optical characteristics are only guaranteed under the controller & waveform provided by MT.

1) Measurement Instruments: X-rite i1Pro

2) Ghosting formula:

W ghosting: \triangle L= Max (\triangle L(W-W, B-W)) - Min (\triangle L(W-W B-W))

K ghosting: \triangle L= Max (\triangle L(W-B, B-B)) - Min(\triangle L(W-B, B-B))

12.6 Inspection standard

12.6.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm <d≤0.4mm. N≤4 allowable D>0.4mm is not allowed</d≤0.4mm. 		Visual inspection	
3	Show B/W lines	L \leq 0.4mm,W \leq 0.1mm negligible 0.4mm $<$ L \leq 1.0mm 0.1mm $<$ W \leq 0.4mm N \leq 4 allowable L $>$ 1.0mm ,W $>$ 0.4mm is not allowed	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash dot / Multilateral	Flash points are allowed when switching screens Multilateral colors outside the frame are allowed for fixed screen time	MI	Visual/ Inspection card	Zone A Zone B
6	Segmented display	Selection segments are all displayed, and other segments are not displayed after the selection segment.	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

12.6.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D=(L+W)/2 D \leq 0.25mm negligible 0.25mm $<$ D \leq 0.4mm N \leq 4 allowable D $>$ 0.4mm is not allowed	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mm And without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B
8	B/W Line	<u>L →</u>	MI	Visual / Ruler	Zone B

		$\begin{tabular}{ll} $L \leqslant 0.4 mm, W \leqslant 0.1 mm & negligible \\ $0.4 mm < L \leqslant 1.0 mm \\ $0.1 mm < W \leqslant 0.4 mm \\ $N \leqslant 4$ allowable \\ $L > 1.0 mm \ ,W > 0.4 mm is not \\ $allowed \end{tabular}$			
9	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
10	Electrostatic point	D \leqslant 0.25mm, allow 0.25mm $<$ D \leqslant 0.4mm, n \leqslant 4 allow D $>$ 0.4mm is not allowed (n \leqslant 8 items are allowed within 5 mm in diameter)	MI	Visual / Microscope	Zone A
11	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
12	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
13	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
14	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC ≤ 1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
15	Warp degree (TFT substrate)	FPL t≤1.0mm	MI	Ruler	
16	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

13.Packaging

DATE EPD PACKING INSTRUCTION DESIGN CHECKED DKE-QS. D-010 APPROVED P/N Customer Code Ref.P/N Туре PKG Method Marking Surface Marks Pull Tape Blister GLASS BACK None YES DEPG0310 18PCS/LAYER, 20LAYER/CTN, TOTAL 360PCS/CTN. Packing Materials List List Mode1 Materials Q'ty Unit Pull tape: 12# 417*362*229 mm Carton corrugate 1 Piece 12#(INNER)400*343 *95 mm corrugate Piece Inner Carton PET 22 DEPG0310A PET1.0 Piece Blister Thin foam Antistatic 314. 93x265. 38XT1. 5~1. 8 EPE 20 Piece 2 Piece 450*590*0.075 vacuum bag EPE Foam board DKE2251-10 3 Piece PULL TAPE 16*5*T0.05 360 Piece Detail: The blister box is rotated Blister box: for placement Note: there are 20 layers of products, Empty blister Antistatic divided into 2 inner boxes, and an empty Thin foam vacuum bag blister box is placed on the top of each Blister inner box, so the number of blister boxes with rubber bands is 22 Foam board PUT IT INTO 12# INNER CARTON INNER BOX LABEL 12# INNER CARTON PUT TWO 12# INNER CARTON INTO 12# CARTON 12# CARTON Packing belt rohs Label **QUANTITY:** 18PCS Epaper Identification Model No._

14. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status		
Product specification	This data sheet contains final product specifications.	
	Limiting values	
or more of the limiting valu operation of the device at th	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one es may cause permanent damage to the device. These are stress ratings only and ese or at any other conditions above those given in the Characteristics sections of the Exposure to limiting values for extended periods may affect device reliability.	
	Application information	
Where application informat	on is given, it is advisory and does not form part of the specification.	
	Product Environmental certification	
ROHS		
	REMARK	
All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.		
Transport environment		

When the humidity of transportation environment is between 45%RH~70%RH, the product can be stored for 30

days, and the product can be stored for 10 days if it is lower or higher than this range

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microtips Technology:

MT-DEPG0310BNS800F2