

3.8 Ω On-Resistance, SPDT Switch

FEATURES

- > 3.8 Ω on resistance
- Specified at
 - $V_{DD} = +5 V \pm 10\%$
 - $V_{SS} = -4.5 \text{ V to } -8.8 \text{ V}$
- No V₁ supply required
- ▶ 3 V logic-compatible inputs
- ▶ Up to 310 mA continuous current
- ▶ Rail-to-rail operation
- ▶ 8-lead, 2 mm × 3 mm LFCSP

APPLICATIONS

- ▶ LDMOS power amplifier gate drive
- GAN power amplifier gate drive
- ▶ Communication systems
- Automatic test equipment
- Data acquisition systems
- ▶ Sample-and-hold systems

GENERAL DESCRIPTION

The ADG1519 is a single-pole, double throw (SPDT) switch. An EN input on the lead frame chip scale package (LFCSP) is used to enable or disable the device. When disabled, the switch terminals (SA, SB, and D) are high impedance.

The ADG1519 is fully specified at V_{DD} = +5 V ± 10% and V_{SS} = -4.5 V to -8.8 V for applications that require asymmetrical supplies. The ADG1519 on-resistance profile is flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. The construction ensures ultra low power dissipation, making the device ideally suited for portable and battery-powered instruments.

The switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. The ADG1519 exhibits break-before-make switching action for use in multiplexer applications.

FUNCTIONAL BLOCK DIAGRAM

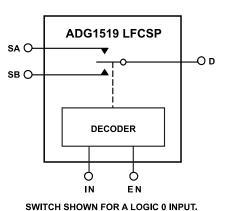


Figure 1.

PRODUCT HIGHLIGHTS

- **1.** 5.2 Ω maximum on resistance at 25°C.
- 2. -98 dB THD.
- 3 V logic-compatible digital inputs: V_{INH} = 2.0 V minimum and V_{INI} = 0.8 V maximum.
- **4.** No logic power supply voltage (V_I) required.
- 5. 8-lead, 2 mm × 3 mm LFCSP (see the Outline Dimensions section).

TABLE OF CONTENTS

Features	Pin Configuration and Function Descriptions Typical Performance Characteristics	7
General Description1	Test Circuits	
Functional Block Diagram1	Terminology	
Product Highlights1	Applications Information	
Specifications3	Power Amplifier Gate Drive	14
Dual Supply3	Power Supply Rails	14
Continuous Current Per Channel, Sx or D4	Power Supply Recommendations	
Absolute Maximum Ratings5	Outline Dimensions	15
Thermal Resistance5	Ordering Guide	15
ESD Caution5	Evaluation Boards	
REVISION HISTORY 11/2023—Rev. A to Rev. B Change to Product Highlights Section		. 8
10/2023—Rev. 0 to Rev. A Changes to Total Harmonic Distortion Plus Noise, THD THD Parameter, Table 1		. 3

1/2022—Revision 0: Initial Version

analog.com Rev. B | 2 of 15

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V ± 10%, V_{SS} = -4.5 V to -8.8 V, and GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					V_{DD} = +4.5 V, V_{SS} = -7.2 V
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, R _{ON}	3.8			Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_S = -10$ mA, and see Figure 18 ¹
	5.2	6.2	7	Ω max	, in the second
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_S = -10 \text{ mA}^1$
	0.3	0.35	0.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.15			Ω typ	$V_{S} = V_{SS}$ to V_{DD} , $I_{S} = -10 \text{ mA}^{1}$
	1.6	1.85	2	Ω max	
LEAKAGE CURRENTS					V _{DD} = +5.5 V, V _{SS} = -8.8 V
Source Off Leakage, I_S (Off)	±0.1			nA typ	V_S and $V_D = V_{DD} - 1 V$ to $V_{SS} + 1 V$, see Figure 19 ^{1, 2}
	±10	±12	±100	nA max	
Drain Off Leakage, I_D (Off)	±0.1			nA typ	V_S and $V_D = V_{DD} - 1 V$ to $V_{SS} + 1 V$, see Figure 19 ^{1, 2}
	±10	±13	±140	nA max	
Channel On Leakage, I _D , I _S (On)	±0.1			nA typ	$V_S = V_D = V_{DD} - 1 \text{ V to } V_{SS} + 1 \text{ V, see}$ Figure 20 ^{1, 2}
	±10	±13	±110	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND}$ or V_{DD}^3
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS					$V_{DD} = +5 \text{ V}, V_{SS} = -8 \text{ V}$
Transition Time, t _{TRANSITION}	240			ns typ	$R_L = 300 \Omega, C_L = 35 pF^4$
	305	365	400	ns max	V _S = 3 V, see Figure 21 ¹
t _{ON} (EN)	215			ns typ	$R_L = 300 \Omega, C_L = 35 pF^4$
	275	325	360	ns max	V _S = 3 V, see Figure 23 ¹
t _{OFF} (EN)	265			ns typ	$R_L = 300 \Omega, C_L = 35 pF^4$
	335	380	415	ns max	V _S = 3 V, see Figure 23 ¹
Break-Before-Make Time Delay, t _D	65			ns typ	$R_L = 300 \Omega, C_L = 35 pF^4$
			38	ns min	$V_{SA} = V_{SB} = 3 \text{ V}$, see Figure 22 ⁵
Charge Injection	12			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure } 24^{1, 4, 6}$
Off Isolation	– 60			dB typ	R_L = 50 Ω, C_L = 5 pF, frequency = 1 MHz, see Figure 25 ⁴
Channel-to-Channel Crosstalk	-60			dB typ	R_L = 50 Ω , C_L = 5 pF, frequency = 1 MHz, see Figure 26 ⁴
Total Harmonic Distortion Plus Noise, THD + N	0.0019			% typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p, frequency = 20 Hz to 20 kHz, see Figure 28 ⁴
	-94			dB typ	
Total Harmonic Distortion, THD	-98			dB typ	R_L = 10 kΩ, 5 V p-p, frequency = 1 kHz ⁴
	-96			dB typ	R_L = 10 kΩ, 5 V p-p, frequency = 20 kHz ⁴
	-85			dB typ	$R_L = 10 \text{ k}\Omega$, 5 V p-p, frequency = 100 kHz ⁴

analog.com Rev. B | 3 of 15

SPECIFICATIONS

Table 1. (Continued)

Parameter	25°C	-40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
−3 dB Bandwidth	95			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 27 ⁴
Insertion Loss	0.3			dB typ	R_L = 50 Ω , C_L = 5 pF, frequency = 1 MHz, see Figure 27 ⁴
Source Capacitance, C _S (Off)	27			pF typ	V _S = 0 V, frequency = 1 MHz ¹
Drain Capacitance, C _D (Off)	58			pF typ	$V_S = 0 V$, frequency = 1 MHz ¹
C_D, C_S (On)	129			pF typ	V _S = 0 V, frequency = 1 MHz ¹
POWER REQUIREMENTS					V _{DD} = +5.5 V, V _{SS} = -8.8 V
Positive Supply Current, I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
Negative Supply Current, I _{SS}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	

 $^{^{1}}$ V_S is the analog voltage for Terminal SA or Terminal SB and I_S is the analog current for Terminal Sx.

CONTINUOUS CURRENT PER CHANNEL, SX OR D

Table 2.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL					
Dual Supply					$V_{DD} = +4.5 \text{ V}, V_{SS} = -7.2 \text{ V}$
8-Lead LFCSP ($\theta_{JA} = 64.9^{\circ}$ C/W)	310	180	95	mA maximum	

analog.com Rev. B | 4 of 15

 $^{^{2}}$ V_{D} is the analog voltage on Terminal D.

 $^{^3~\}rm\ V_{IN}$ is the IN voltage, and $\rm\ V_{GND}$ is the GND voltage.

 $^{^4~\}mbox{ R}_{\mbox{\scriptsize L}}$ is the load resistance and $\mbox{\scriptsize C}_{\mbox{\scriptsize L}}$ is the load capacitance.

 $^{^5~\}rm V_{SA}$ is the Source A voltage, and $\rm V_{SB}$ is the Source B voltage.

 $^{^{6}}$ R_S is the source resistance.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating	
V _{DD} to V _{SS}	18 V	
V _{DD} to GND	–0.3 V to +16.5 V	
V _{SS} to GND	+0.3 V to -16.5 V	
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first	
Digital Inputs ¹	$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first	
Peak Current, Sx or D (Pulsed at 1 ms, 10% Duty-Cycle Maximum)	600 mA	
Continuous Current per Channel, Sx or D	Data in Table 2 + 15% mA	
Temperature		
Operating Range	-40°C to +125°C	
Storage Range	-65°C to +150°C	
Junction	150°C	
Reflow Soldering Peak, Pb Free	JEDEC-J-STD-020	
Peak Temperature	260°C	

Over voltages at IN, Sx, or D are clamped by internal diodes. Limit the current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JC} is the junction-to-case thermal resistance.

Table 4. Thermal Resistance

Package Type ¹	θ_{JA}	θ_{JC}	Unit
CP-8-31	64.90	14.31	°C/W

Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD-51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. B | 5 of 15

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

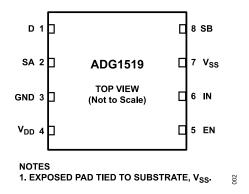


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. The D pin can be an input or output.
2	SA	Source Terminal. The SA pin can be an input or output.
3	GND	Ground (0 V) Reference.
4	V_{DD}	Most Positive Power Supply Potential. Decouple the V _{DD} pin using a 0.1 μF capacitor to GND.
5	EN	Active High Digital Input. When the EN pin is low, the device is disabled, and the SA, SB, and D terminals are high impedance. When the EN pin is high, the IN logic input determines which switch is turned on.
6	IN	Logic Control Input.
7	V _{SS}	Most Negative Power Supply Potential. Decouple the V _{SS} pin using a 0.1 µF capacitor to GND.
8	SB	Source Terminal. The SB pin can be an input or output.
0	EPAD	Exposed Pad. Exposed pad tied to substrate, V _{SS} .

Table 6. Truth Table

EN	IN	D
0	X ¹	High impedance
1	0	SA
1	1	SB

¹ X means don't care.

analog.com Rev. B | 6 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

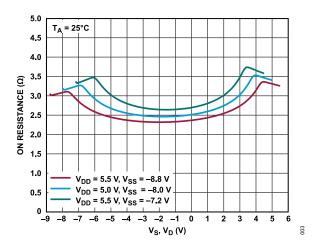


Figure 3. On Resistance as a Function of V_S and V_D

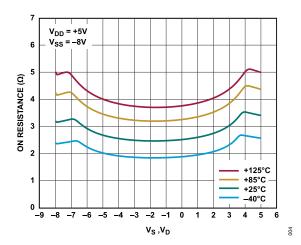


Figure 4. On Resistance as a Function of $V_{\rm S}$ and $V_{\rm D}$ for Different Temperatures

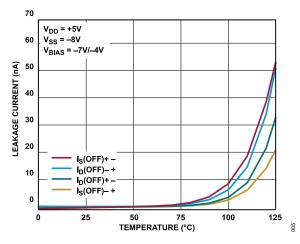


Figure 5. Off Leakage as a Function of Temperature

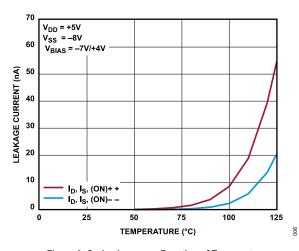


Figure 6. On Leakage as a Function of Temperature

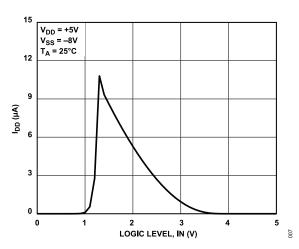


Figure 7. I_{DD} vs. Logic Level, IN

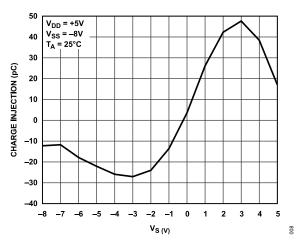


Figure 8. Charge Injection vs. V_S

analog.com Rev. B | 7 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

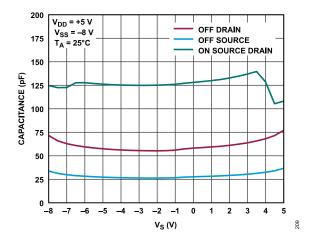


Figure 9. Capacitance vs. V_S

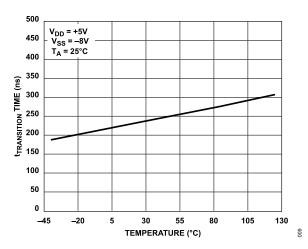


Figure 10. t_{TRANSITION} Time vs. Temperature

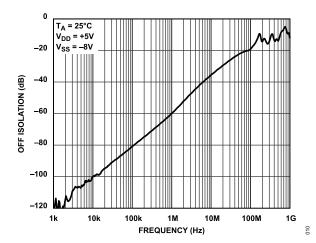


Figure 11. Off Isolation vs. Frequency

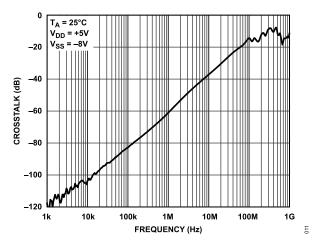


Figure 12. Crosstalk vs. Frequency

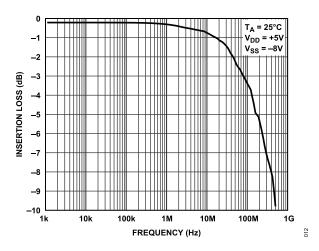


Figure 13. Insertion Loss vs. Frequency

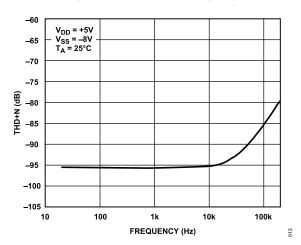


Figure 14. THD + N vs. Frequency

analog.com Rev. B | 8 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

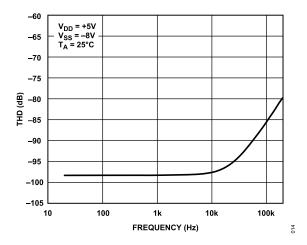


Figure 15. THD vs. Frequency

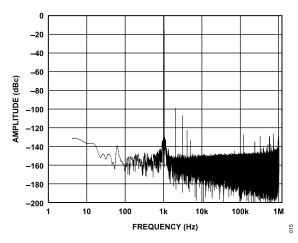


Figure 16. THD Fast Fourier Transform (FFT)

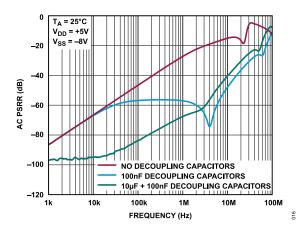
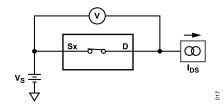



Figure 17. AC Power Supply Rejection Ratio (PSRR) vs. Frequency

analog.com Rev. B | 9 of 15

TEST CIRCUITS

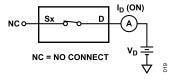


Figure 20. On Leakage

Figure 18. On Resistance (I_{DS} Is the Drain to Source Current.)

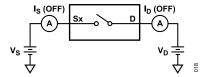


Figure 19. Off Leakage

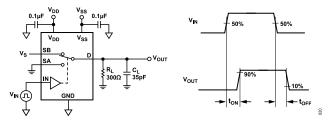


Figure 21. Switching Times, $t_{\rm ON}$ and $t_{\rm OFF}$ ($V_{\rm OUT}$ Is the Output Voltage.)

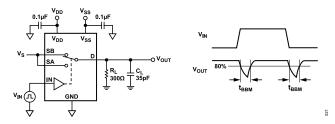


Figure 22. Break-Before-Make Time Delay

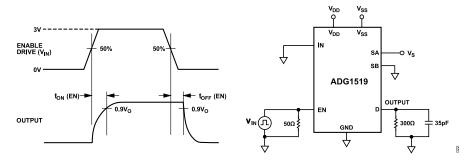


Figure 23. Enable Delay, $t_{\rm ON}$ (EN), $t_{\rm OFF}$ (EN)

analog.com Rev. B | 10 of 15

TEST CIRCUITS

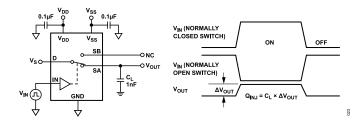


Figure 24. Charge Injection

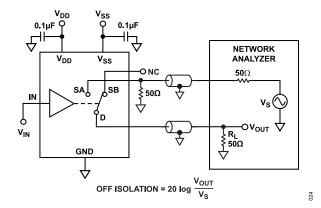


Figure 25. Off Isolation

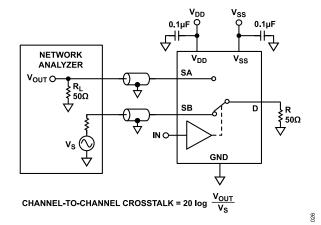


Figure 26. Channel-to-Channel Crosstalk

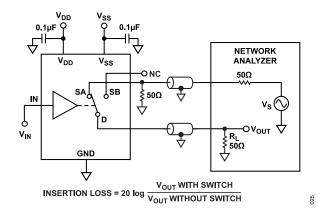


Figure 27. Bandwidth

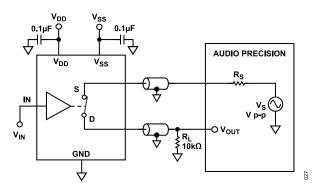


Figure 28. THD and THD + N

analog.com Rev. B | 11 of 15

TERMINOLOGY

I_{DD}

The positive supply current.

ISS

The negative supply current.

V_D and V_S

The analog voltage on Terminal D and Terminal S.

RON

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT ON}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is Off

The source leakage current with the switch off.

I_D Off

The drain leakage current with the switch off.

ID and IS On

The channel leakage current for Terminal D and Terminal S with the switch on.

VINL

The maximum input voltage for Logic 0.

VINH

The minimum input voltage for Logic 1.

I_{INL} and I_{INH}

The input high and low current of the digital input.

Cs Off

The off switch source capacitance, measured with reference to ground.

C_D Off

The off switch drain capacitance, measured with reference to ground.

C_D and C_S On

The on switch capacitance for Terminal D and Terminal S, measured with reference to ground.

CIN

The digital input capacitance.

ton EN

Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 23.

toff EN

Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 23.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

T_D

Off time measured between the 80% point of both switches when switching from one address state to another. See Figure 22.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 24.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 25.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 26.

Bandwidth

The frequency at which the output is attenuated by 3 dB. See Figure 27.

Insertion Loss

The loss due to the on resistance of the switch. See Figure 27.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 28.

THD

THD is the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. See Figure 28.

analog.com Rev. B | 12 of 15

TERMINOLOGY

AC PSRR

AC PSRR measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the AC PSRR. See Figure 17.

analog.com Rev. B | 13 of 15

APPLICATIONS INFORMATION

POWER AMPLIFIER GATE DRIVE

Figure 29 shows a typical application where the ADG1519 is used to set the gate bias voltage for an RF power amplifier for communications applications. The asymmetrical dual supply and rail-to-rail operation of the ADG1519 allows for negative voltages of up to –8 V for biasing gallium nitride (GaN) power amplifiers while the positive +5 V rail is ideal for laterally diffused metal-oxide semiconductor (LDMOS) power amplifiers.

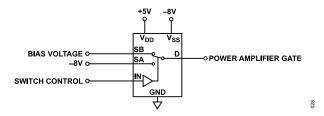


Figure 29. GaN Power Amplifier Gate Drive

POWER SUPPLY RAILS

To guarantee correct operation of the ADG1519, 0.1 μ F decoupling capacitors are required on the V_{DD} and V_{SS} pins.

The ADG1519 can operate with asymmetrical bipolar supplies between of V_{DD} = +5 V \pm 10% and V_{SS} = -4.5 V to -8.8 V. The supplies on V_{DD} and V_{SS} do not have to be asymmetrical. However, the V_{DD} to V_{SS} range must not exceed 18 V as stated in the Absolute Maximum Ratings section.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of an asymmetrical bipolar power solution is shown in Figure 30. The ADP5070 (dual switching regulator) generates a positive and negative supply rail for the ADG1519. Also shown in Figure 30 are two optional low dropout regulators (LDOs), the ADP7118 and ADP7182 positive and negative LDOs, respectively, that can be used to reduce the output ripple of the ADP5070 in ultralow noise sensitive applications.

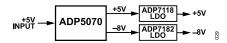


Figure 30. Bipolar Power Solution

Table 7. Recommended Power Management Devices

Product	Description
ADP5070	1 A/0.6 A, dc-to-dc switching regulator with independent positive and negative outputs
ADP7118	20 V, 200 mA, low noise, complementary metal oxide semiconductor (CMOS) LDO linear regulator
ADP7182	-28 V, -200 mA, low noise, LDO linear regulator

analog.com Rev. B | 14 of 15

OUTLINE DIMENSIONS

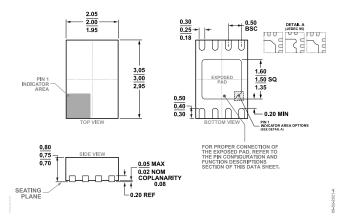


Figure 31. 8-Lead Lead Frame Chip Scale Package [LFCSP]
2 mm × 3 mm Body and 0.75 mm Package Height
(CP-8-31)

Dimensions shown in millimeters

Updated: August 09, 2023

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option	Marking Code
ADG1519BCPZ-RL7	-40°C to +125°C	8-lead LFCSP, 2 mm × 3 mm × 0.75	Reel, 3000	CP-8-31	S59

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Model ¹	Description
EVAL-ADG1519EBZ	Evaluation Board

¹ Z = RoHS Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG1519BCPZ-RL7 EVAL-ADG1519EBZ