3-Axis, ±0.5 g/±1 g/±2 g/±4 g Digital Accelerometer #### **FEATURES** - ▶ Ultralow power (scales automatically with data rate) - As low as 30 μA in measurement mode (V_S = 3.3 V) - \blacktriangleright As low as 0.1 μ A in standby mode ($V_S = 3.3 \text{ V}$) - ▶ Low noise performance - ▶ 150 $\mu g/\sqrt{Hz}$ typical for X- and Y-axes - ▶ 250 $\mu g/\sqrt{Hz}$ typical for the Z-axis - Embedded, patent pending FIFO technology minimizes host processor load - ▶ User-selectable resolution - ► Fixed 10-bit resolution for any g range - ▶ Fixed 1024 LSB/g sensitivity for any g range - ▶ Resolution scales from 10-bit at ±0.5 g to 13-bit at ±4 g - ▶ Built-in motion detection functions for activity/inactivity monitoring - ▶ Supply and I/O voltage range: 2.0 V to 3.6 V - ▶ SPI (3-wire and 4-wire) and I²C digital interfaces - ▶ Flexible interrupt modes mappable to two interrupt pins - ▶ Measurement range selectable via serial command - Bandwidth selectable via serial command - ▶ Wide temperature range (-40°C to +105°C) - ▶ 10,000 g shock survival - ▶ Pb free/RoHS compliant - ▶ Small and thin: 5 mm × 5 mm × 1.45 mm LFCSP package - Qualified for automotive applications #### **APPLICATIONS** - Car alarms - Hill start aid (HSA) systems - ▶ Electronic parking brakes - ▶ Data recorders (black boxes) # **GENERAL DESCRIPTION** The ADXL313 is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit) measurement up to $\pm 4~g$. Digital output data is formatted as 16-bit twos complement and is accessible through either a serial port interface (SPI) (3-wire or 4-wire) or I²C digital interface. The ADXL313 is well suited for car alarm or black box applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (1024 LSB/g) and low noise (150 μ g/ \sqrt{Hz}) enable resolution of inclination changes of as little as 0.1°. A built-in FIFO facilitates using oversampling techniques to improve resolution to as little as 0.025° of inclination. Several built-in sensing functions are provided. Activity and inactivity sensing detects the presence or absence of motion and whether the acceleration on any axis exceeds a user-set level. These functions can be mapped to interrupt output pins. An integrated 32-level FIFO can be used to store data to minimize host processor intervention, resulting in reduced system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation. The ADXL313 is supplied in a small, thin 5 mm × 5 mm × 1.45 mm, 32-lead LFCSP package and is pin compatible with the ADXL312 accelerometer device. # **FUNCTIONAL BLOCK DIAGRAM** Figure 1. # **TABLE OF CONTENTS** | Features1 | FIFO | . 18 | |---|---|------| | Applications1 | Bypass Mode | 18 | | General Description1 | FIFO Mode | . 18 | | Functional Block Diagram1 | Stream Mode | 18 | | Specifications3 | Trigger Mode | . 18 | | Absolute Maximum Ratings5 | Retrieving Data from FIFO | . 18 | | Thermal Resistance5 | Self Test | 19 | | Solder Profile5 | Register Map | . 20 | | ESD Caution5 | Register Definitions | . 21 | | Pin Configuration and Function Descriptions 6 | Applications Information | | | Typical Performance Characteristics7 | | | | Theory of Operation9 | | . 26 | | Power Sequencing9 | Asynchronous Data Readings | 26 | | Power Savings10 | Threshold | . 26 | | Serial Communications11 | Link Mode | 26 | | Serial Port I/O Default States11 | Sleep Mode vs. Low Power Mode | 26 | | SPI11 | Using Self Test | | | I ² C13 | 3200 Hz and 1600 Hz ODR Data Formatting | 27 | | Interrupts16 | Axes of Acceleration Sensitivity | . 28 | | DATA_READY17 | Outline Dimensions | . 29 | | Activity17 | Ordering Guide | 29 | | Inactivity17 | Evaluation Boards | . 29 | | Watermark17 | Automotive Products | . 29 | | Overrun | | | | | | | | REVISION HISTORY | | | | 9/2022—Rev. C to Rev. D | | | | Moved Figure 2 and Table 4 | | 5 | | Added Serial Port I/O Default States Section | | 11 | | Change to Figure 17 | | . 11 | | | | | | | | | | Added Asynchronous Data Readings Section | | . 26 | # **SPECIFICATIONS** T_A = -40°C to +105°C, V_S = $V_{DD~I/O}$ = 3.3 V, acceleration = 0 g, unless otherwise noted. Table 1. | Parameter ¹ | Test Conditions/Comments | Min | Тур | Max | Unit | |---|--|-------|------------------|----------------|-----------------| | SENSOR INPUT | Each axis | | | | | | Measurement Range | User selectable | | ±0.5, ±1, ±2, ±4 | | g | | Nonlinearity | Percentage of full scale | | ±0.5 | | % | | Micro-Nonlinearity | Measured over any 50 mg interval | | ±2 | | % | | Interaxis Alignment Error | | | ±0.1 | | Degrees | | Cross-Axis Sensitivity ² | | | ±1 | | % | | OUTPUT RESOLUTION | Each axis | | | | | | All g Ranges | Default resolution | | 10 | | Bits | | ±0.5 g Range | Full resolution enabled | | 10 | | Bits | | ±1 g Range | Full resolution enabled | | 11 | | Bits | | ±2 g Range | Full resolution enabled | | 12 | | Bits | | ±4 g Range | Full resolution enabled | | 13 | | Bits | | SENSITIVITY | Each axis | | | | | | Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT} | Any g-range, full resolution mode | | 1024 | | LSB/g | | | ±0.5 g, 10-bit or full resolution | 921 | 1024 | 1126 | LSB/g | | | ±1 g, 10-bit resolution | 460 | 512 | 563 | LSB/g | | | ±2 g, 10-bit resolution | 230 | 256 | 282 | LSB/g | | | ±4 g, 10-bit resolution | 115 | 128 | 141 | LSB/g | | Sensitivity Change Due to Temperature | | | ±0.01 | | %/°C | | 0 g BIAS LEVEL | Each axis | | | | | | Initial 0 g Output | T = 25°C, X _{OUT} , Y _{OUT} | | ±50 | | m <i>g</i> | | | T = 25°C, Z _{OUT} | | ±75 | | m <i>g</i> | | 0 g Output Drift over Temperature | -40°C < T < +105°C, X _{OUT} , Y _{OUT} , referenced to initial 0 g output | -125 | | +125 | m <i>g</i> | | | -40°C < T < +105°C, Z _{OUT} , referenced to initial 0 <i>g</i> output | -200 | | +200 | m <i>g</i> | | 0 g Offset Tempco | X _{OUT} , Y _{OUT} | | ±0.5 | | mg/°C | | | Z _{OUT} | | ±0.75 | | mg/°C | | NOISE PERFORMANCE | | | | | | | Noise Density | X-, Y-axes | | 150 | | μ <i>g</i> /√Hz | | · | Z-axis | | 250 | | μ <i>g</i> /√Hz | | RMS Noise | X-, Y-axes, 100 Hz output data rate (ODR) | | 1.5 | | mg rms | | | Z-axis, 100 Hz ODR | | 2.5 | | mg rms | | OUTPUT DATA RATE/BANDWIDTH | User selectable | | | | | | Measurement Rate ³ | | 6.25 | | 3200 | Hz | | SELF TEST ⁴ | Data rate ≥ 100 Hz, 2.0 V ≤ V _S ≤ 3.6 V | | | | | | Output Change in X-Axis | | 0.20 | | 2.36 | g | | Output Change in Y-Axis | | -2.36 | | -0.20 | g | | Output Change in Z-Axis | | 0.30 | | 3.70 | g | | POWER SUPPLY | | | | | | | Operating Voltage Range (V _S) | | 2.0 | | 3.6 | V | | Interface Voltage Range (V _{DD I/O}) | | 1.7 | | V _S | V | | Supply Current | Data rate > 100 Hz | 100 | 170 | 300 | μA | | | Data rate < 10 Hz | 30 | 55 | 110 | μA | analog.com Rev. D | 3 of 30 # **SPECIFICATIONS** Table 1. | Parameter ¹ | Test Conditions/Comments | Min | Тур | Max | Unit | |-------------------------------------|---|-----|-----|------|------| | Standby Mode Leakage Current | T = 25°C 0.1 2 | | μA | | | | | Over entire operating temperature range | | | 10 | μA | | Turn-On (Wake-Up) Time ⁵ | | | 1.4 | | ms | | TEMPERATURE | | | | | | | Operating Temperature Range | | -40 | | +105 | °C | ¹ All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed. analog.com Rev. D | 4 of 30 ² Cross-axis sensitivity is defined as coupling between any two axes. ³ Bandwidth is half the output data rate. ⁴ Self test change is defined as the output (*g*) when the SELF_TEST bit = 1 (in the DATA_FORMAT register, Address 0x31) minus the output (*g*) when the SELF_TEST bit = 0 (in the DATA_FORMAT register). Due to device filtering, the output reaches its final value after 4 × τ when enabling or disabling self test, where τ = 1/(data rate). Turn-on and wake-up times are determined by the user-defined bandwidth. At a 100 Hz data rate, the turn-on and wake-up times are each approximately 11.1 ms. For other data rates, the turn-on and wake-up times are each approximately T + 1.1 in milliseconds, where T = 1/(data rate). # **ABSOLUTE MAXIMUM RATINGS** Table 2. | Parameter | Rating | | | |-------------------------------|---|--|--| | Acceleration | | | | | Any Axis, Unpowered | 10,000 g | | | | Any Axis, Powered | 10,000 g | | | | V_S | -0.3 V to +3.9 V | | | | $V_{DD\ I/O}$ | -0.3 V to +3.9 V | | | | All Other Pins | -0.3 V to V _{DD I/O} + 0.3 V or 3.9 V, whichever is less | | | | Output Short-Circuit Duration | Indefinite | | | | (Any Pin to Ground) | | | | | Temperature Range | | | | | Powered | -40°C to +125°C | | | | Storage | -40°C to +125°C | | | Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. # THERMAL RESISTANCE θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 3. Thermal Resistance | Package Type | θ_{JA} | θ_{JC} | Unit | |-----------------------|---------------|---------------|------| | 32-Lead LFCSP Package | 27.27 | 30 | °C/W | #### **SOLDER PROFILE** Figure 2. Recommended Soldering Profile Table 4. Recommended Soldering Profile | | Condition | | |
|---|------------------|-------------------|--| | Profile Feature ^{1, 2} | Sn63/Pb37 | Pb-Free | | | | 3°C/sec maxi- | 3°C/sec maxi- | | | Average Ramp Rate (T _L to T _P) | mum | mum | | | Preheat | | | | | Minimum Temperature (T _{SMIN}) | 100°C | 150°C | | | Maximum Temperature (T _{SMAX}) | 150°C | 200°C | | | | 60 sec to 120 | | | | Time $(T_{SMIN}$ to $T_{SMAX})$ (t_S) | sec | 60 sec to 120 sec | | | T _{SMAX} to T _L | | | | | Ramp-Up Rate | 3°C/sec | 3°C/sec | | | Time Maintained Above Liquidous (t _L) | | | | | Liquidous Temperature (T _L) | 183°C | 217°C | | | | 60 sec to 150 | | | | Time (t _L) | sec | 60 sec to 150 sec | | | | 240°C + 0°C/ | 260°C + 0°C/ | | | Peak Temperature (T _P) | -5°C | −5°C | | | Time Within 5°C of Actual Peak Tempera- | | | | | ture (t _P) | 10 sec to 30 sec | 20 sec to 40 sec | | | | 6°C/sec maxi- | 6°C/sec maxi- | | | Ramp-Down Rate | mum | mum | | | Time 25°C to Peak Temperature | 6 min maximum | 8 min maximum | | ¹ Based on JEDEC standard J-STD-020D.1. # **ESD CAUTION** ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. analog.com Rev. D | 5 of 30 For best results, ensure that the soldering profile is in accordance with the recommendations of the manufacturer of the solder paste used. # PIN CONFIGURATION AND FUNCTION DESCRIPTIONS NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE SOLDERED TO THE GROUND PLANE. $\mbox{\cite{Big}}$ Figure 3. Pin Configuration Table 5. Pin Function Descriptions | Pin No. | Mnemonic | Description | |----------|---------------------|--| | 1 | GND | This pin must be connected to ground. | | 2 | RESERVED | Reserved. This pin must be connected to V _S or left open. | | 3 | GND | This pin must be connected to ground. | | 4 | GND | This pin must be connected to ground. | | 5 | V _S | Supply Voltage. | | 6 | CS | Chip Select. | | 7 | RESERVED | Reserved. This pin must be left open. | | 8 to 19 | NC | No Connect. Do not connect to this pin. | | 20 | INT1 | Interrupt 1 Output. | | 21 | INT2 | Interrupt 2 Output. | | 22 | RESERVED | Reserved. This pin must be connected to GND or left open. | | 23 | SDO/ALT ADDRESS | Serial Data Output/Alternate I ² C Address Select. | | 24 | SDA/SDI/SDIO | Serial Data (I ² C)/Serial Data Input (SPI 4-Wire)/Serial Data Input/Output (SPI 3-Wire). | | 25 | NC | No Connect. Do not connect to this pin. | | 26 | SCL/SCLK | I ² C Serial Communications Clock/SPI Serial Communications Clock. | | 27 to 30 | NC | No Connect. Do not connect to this pin. | | 31 | V _{DD I/O} | Digital Interface Supply Voltage. | | 32 | NC | No Connect. Do not connect to this pin. | | | EP | Exposed Pad. The exposed pad must be soldered to the ground plane. | analog.com Rev. D | 6 of 30 # TYPICAL PERFORMANCE CHARACTERISTICS Figure 4. X-Axis Acceleration vs. Temperature, Three Lots (N = 80) Figure 5. Y-Axis Acceleration vs. Temperature, Three Lots (N = 80) Figure 6. Z-Axis Acceleration vs. Temperature, Three Lots (N = 80) Figure 7. X-Axis Nonlinearity, ±2 g Input Range Figure 8. Y-Axis Nonlinearity, ±2 g Input Range Figure 9. Z-Axis Nonlinearity, ±2 g Input Range analog.com Rev. D | 7 of 30 # **TYPICAL PERFORMANCE CHARACTERISTICS** Figure 10. X-Axis Microlinearity, 50 mg Step Size Figure 11. Y-Axis Microlinearity, 50 mg Step Size Figure 12. Z-Axis Microlinearity, 50 mg Step Size Figure 13. Standby Mode Current Consumption, $V_S = V_{DD \ I/O} = 3.3 \ V, 25^{\circ}C$ Figure 14. Current Consumption, Measurement Mode, Data Rate = 100 Hz, V_S = $V_{DD\,I/O}$ = 3.3 V, 25°C Figure 15. Supply Current vs. Supply Voltage, V_S at 25°C analog.com Rev. D | 8 of 30 #### THEORY OF OPERATION The ADXL313 is a complete 3-axis acceleration measurement system with a selectable measurement range of $\pm 0.5~g$, $\pm 1~g$, $\pm 2~g$, or $\pm 4~g$. It measures both dynamic acceleration resulting from motion or shock and static acceleration, such as gravity, which allows it to be used as a tilt sensor. The sensor is a polysilicon surface-micromachined structure built on top of a silicon wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a resistance against acceleration forces. Deflection of the structure is measured using differential capacitors that consist of independent fixed plates and plates attached to the moving mass. Acceleration deflects the beam and unbalances the differential capacitor, resulting in a sensor output whose amplitude is proportional to acceleration. Phase-sensitive demodulation is used to determine the magnitude and polarity of the acceleration. #### **POWER SEQUENCING** Power can be applied to V_S or V_{DD I/O} in any sequence without damaging the ADXL313. All possible power-on modes are summar- ized in Table 6. The interface voltage level is set with the interface supply voltage, $V_{DD\;I/O},$ which must be present to ensure that the ADXL313 does not create a conflict on the communication bus. For single-supply operation, $V_{DD\;I/O}$ can be the same as the main supply, $V_S.$ In a dual-supply application, however, $V_{DD\;I/O}$ can differ from V_S to accommodate the desired interface voltage, as long as V_S is greater than or equal to $V_{DD\;I/O}.$ After V_S is applied, the device enters standby mode, where power consumption is minimized and the device waits for $V_{DD \,I/O}$ to be applied and for the command to enter measurement mode to be received. (This command can be initiated by setting the measure bit in the POWER_CTL register (Address 0x2D).) In addition, any register can be written to or read from to configure the part while the device is in standby mode. It is recommended that the device be configured in standby mode before measurement mode is enabled. Clearing the measure bit returns the device to the standby mode. Table 6. Power Sequencing | runic or remain coquer | table of tower ocquerioning | | | | | |-----------------------------|-----------------------------|---------------|--|--|--| | Condition | V_{S} | $V_{DD\ I/O}$ | Description | | | | Power Off | Off | Off | The device is completely off, but there is a potential for a communication bus conflict. | | | | Bus Disabled | On | Off | The device is on in standby mode, but communication is unavailable, and the device creates a conflict on the communication bus. Minimize the duration of this state during power-up to prevent a conflict. | | | | Bus Enabled | Off | On | No functions are available, but the device does not create a conflict on the communication bus. | | | | Standby or Measure-
ment | On | On | The device is in standby mode, awaiting a command to enter measurement mode, and all sensor functions are off. After the device is instructed to enter measurement mode, all sensor functions are available. | | | analog.com Rev. D | 9 of 30 #### THEORY OF OPERATION #### **POWER SAVINGS** #### **Power Modes** The ADXL313 automatically modulates its power consumption in proportion to its output data rate, as outlined in Table 7. If additional power savings are desired, a lower power mode is available. In this mode, the internal sampling rate is reduced, allowing for power savings in the 12.5 Hz to 400 Hz data rate range at the expense of slightly greater noise. To enter low power mode, set the LOW_POWER bit (Bit 4) in the BW_RATE register (Address 0x2C). The current consumption in low power mode is shown in Table 8 for cases where there is an advantage to using low power mode. Use of low power mode for a data rate not shown in Table 8 does not provide any advantage over the same data rate in normal power mode. Therefore, it is recommended that only data rates shown in Table 8 be used in low power mode. The current consumption values shown in Table 7 and Table 8 are for a V_S of 3.3 V. Table 7. Current Consumption vs. Data Rate (T_A = 25°C, V_S = $V_{DD I/O}$ = 3.3 V) | Output Data Rate | | | | | | |------------------|----------------|-----------|----------------------|--|--| | (Hz) | Bandwidth (Hz) | Rate Code | I _{DD} (μA) | | | | 3200 | 1600 | 1111 | 170 | | | | 1600 | 800 | 1110 | 115 | | | | 800 | 400 | 1101 | 170 | | | | 400 | 200 | 1100 | 170 | | | | 200 | 100 | 1011 | 170 | | | | 100 | 50 | 1010 | 170 | | | | 50 | 25 | 1001 | 115 | | | | 25 | 12.5 | 1000 | 82 | | | | 12.5 | 6.25 | 0111 | 65 | | | | 6.25 | 3.125 | 0110 | 57 | | | Table 8. Current Consumption vs. Data Rate, Low Power Mode (T_A = 25°C, V_S = $V_{DD,VO}$ = 3.3 V) | Output Data Rate | | | | | |------------------|----------------|-----------|----------------------|--| | (Hz) | Bandwidth (Hz) | Rate Code | I _{DD} (μA) | | | 400 | 200 | 1100 | 115 | | | 200 | 100 | 1011 | 82 | | | 100 | 50 | 1010 | 65 | | | 50 | 25 | 1001 | 57 | | | 25 | 12.5 | 1000 | 50 | | | 12.5 | 6.25 | 0111 | 43 | | #### **Autosleep Mode** Additional power savings can be obtained by having the ADXL313 automatically switch to sleep mode during periods of inactivity. To enable this feature, set the THRESH_INACT register (Address 0x25) to an acceleration threshold value. Levels of acceleration below this threshold are regarded as no activity. Set TIME_INACT (Address 0x26) to an appropriate inactivity time period. Then set the AUTO_SLEEP bit and the link bit in the POWER_CTL register (Address 0x2D). If the device does not detect a level of acceleration in excess of THRESH_INACT for
TIME_INACT seconds, the device is transitioned to sleep mode automatically. Current consumption at less than 10 Hz data rates used in this mode is typically 55 μA for a V_S of 3.3~V. # Standby Mode For even lower power operation, standby mode can be used. In standby mode, current consumption is reduced to 0.1 μ A (typical). In this mode, no measurements are made. Standby mode is entered by clearing the measure bit (Bit 3) in the POWER_CTL register (Address 0x2D). Placing the device into standby mode preserves the contents of the FIFO. analog.com Rev. D | 10 of 30 #### **SERIAL COMMUNICATIONS** I^2C and SPI digital communications are available. In both cases, the ADXL313 operates as a slave. I^2C mode is enabled if the \overline{CS} pin is tied high to $V_{DD\ I/O}$. The \overline{CS} pin must always be tied high to $V_{DD\ I/O}$ or be driven by an external controller because there is no default mode if the \overline{CS} pin is left unconnected. Therefore, not taking these precautions may result in an inability to communicate with the part. In SPI mode, the \overline{CS} pin is controlled by the bus master. In both SPI and I^2C modes of operation, ignore data transmitted from the ADXL313 to the master device during writes to the ADXL313. # **SERIAL PORT I/O DEFAULT STATES** Ensure that all serial port I/Os are in a defined state and that no pin is allowed to float when not in use. This is applicable to all serial port I/Os, regardless of SPI or I²C operation. For l^2C applications, always tie the \overline{CS} pin high to $V_{DD\,I/O}$. Connect the SCL and SDA pins to an external controller, with pull-up resistors implemented according to the $UM10204\,l^2C$ -Bus Specification and User Manual, Rev. 03—19 June 2007, available from NXP Semiconductor. The ALT ADDRESS pin must be tied to either $V_{DD\,I/O}$ or ground, thereby selecting the desired l^2C address for the ADXL313. If the SPI is the intended communications interface, drive the pin with an external controller, as shown in Figure 16 and Figure 17. When communications with the ADXL313 are suspended ($\overline{\text{CS}}$ = $V_{\text{DD I/O}}$), ensure that the SCLK, SDI/SDIO, and SDO pins are not floating. For either SPI or I²C operation, not taking these precautions may result in an inability to communicate with the device or excessive current consumption. #### SPI For SPI communication, either 3- or 4-wire configuration is possible, as shown in the connection diagrams in Figure 16 and Figure 17. Clearing the SPI bit in the DATA_FORMAT register (Address 0x31) selects 4-wire mode, whereas setting the SPI bit selects 3-wire mode. The maximum SPI clock speed is 5 MHz with 100 pF maximum loading, and the timing scheme follows clock polarity (CPOL) = 1 and clock phase (CPHA) = 1. If power is applied to the ADXL313 before the clock polarity and phase of the host processor are configured, the $\overline{\text{CS}}$ pin must be brought high before changing the clock polarity and phase. When using the 3-wire SPI configuration, it is recommended that the SDO pin be either pulled up to $V_{\text{DD I/O}}$ or pulled down to GND via a 10 k Ω resistor. Figure 16. 3-Wire SPI Connection Diagram Figure 17. 4-Wire SPI Connection Diagram CS is the serial port enable line and is controlled by the SPI master. This line must go low at the start of a transmission and high at the end of a transmission, as shown in Figure 18 to Figure 20. SCLK is the serial port clock and is supplied by the SPI master. SCLK idles high during a period of no transmission. SDI and SDO are the serial data input and output, respectively. Data is updated on the falling edge of SCLK and sampled on the rising edge of SCLK. To read or write multiple bytes in a single transmission, the multiple-byte bit, located after the R/\overline{W} bit in the first byte transfer (MB in Figure 18 to Figure 20), must be set. After the register addressing and the first byte of data, each subsequent set of clock pulses (eight clock pulses) causes the ADXL313 to point to the next register for a read or write. This shifting continues until the clock pulses cease and \overline{CS} is deasserted. To perform reads or writes on different, nonsequential registers, \overline{CS} must be deasserted between transmissions, and the new register must be addressed separately. The timing diagram for 3-wire SPI reads or writes is shown in Figure 18. The 4-wire equivalents for SPI reads and writes are shown in Figure 19 and Figure 20, respectively. For correct operation of the part, the logic thresholds and timing parameters in Table 9 and Table 10 must be met at all times. Use of the 3200 Hz and 1600 Hz output data rates is recommended only with SPI communication rates greater than or equal to 2 MHz. The 800 Hz output data rate is recommended only for communication speeds greater than or equal to 400 kHz, and the remaining data rates scale proportionally. For example, the minimum recommended communication speed for a 200 Hz output data rate is 100 kHz. Operation at an output data rate below the recommended minimum may result in undesirable effects on the acceleration data, including missing samples or additional noise. analog.com Rev. D | 11 of 30 # **SERIAL COMMUNICATIONS** Table 9. SPI Digital Input/Output | Parameter | Test Conditions/Comments | Min | Max | Unit | | |--|--|-------------------------|---------------------------|------|--| | Digital Input | | | | | | | Low Level Input Voltage (V _{IL}) | | | 0.3 × V _{DD I/O} | V | | | High Level Input Voltage (V _{IH}) | | $0.7 \times V_{DD I/O}$ | | V | | | Low Level Input Current (I _{IL}) | $V_{IN} = V_{DD\ I/O}$ | | 0.1 | μA | | | High Level Input Current (I _{IH}) | V _{IN} = 0 V | -0.1 | | μA | | | Digital Output | | | | | | | Low Level Output Voltage (V _{OL}) | I _{OL} = 10 mA | | 0.2 × V _{DD I/O} | V | | | High Level Output Voltage (V _{OH}) | $I_{OH} = -4 \text{ mA}$ | $0.8 \times V_{DD I/O}$ | | V | | | Low Level Output Current (I _{OL}) | V _{OL} = V _{OL, max} | 10 | | mA | | | High Level Output Current (I _{OH}) | V _{OH} = V _{OH, min} | | -4 | mA | | | Pin Capacitance | $f_{IN} = 1 \text{ MHz}, V_{IN} = 2.5 \text{ V}$ | | 8 | pF | | ¹ Limits based on characterization results; not production tested. Table 10. SPI Timing ($T_A = 25$ °C, $V_S = V_{DD~I/O} = 3.3~V$) | Limit ^{2, 3} | | | | | |------------------------|-------------------------|-----|------|--| | Parameter ¹ | Min ¹ | Max | Unit | Description ¹ | | f _{SCLK} | | 5 | MHz | SPI clock frequency. | | t _{SCLK} | 200 | | ns | 1/(SPI clock frequency) mark-space ratio for the SCLK input is 40/60 to 60/40. | | t _{DELAY} | 5 | | ns | CS falling edge to SCLK falling edge. | | t _{QUIET} | 5 | | ns | SCLK rising edge to $\overline{\text{CS}}$ rising edge. | | t _{DIS} | | 10 | ns | CS rising edge to SDO disabled. | | t_CS,DIS | 150 | | ns | CS deassertion between SPI communications. | | t _S | 0.3 × t _{SCLK} | | ns | SCLK low pulse width (space). | | t _M | 0.3 × t _{SCLK} | | ns | SCLK high pulse width (mark). | | t _{SETUP} | 5 | | ns | SDI valid before SCLK rising edge. | | t _{HOLD} | 5 | | ns | SDI valid after SCLK rising edge. | | t _{SDO} | | 40 | ns | SCLK falling edge to SDO/SDIO output transition. | | t_R^4 | | 20 | ns | SDO/SDIO output high to output low transition. | | t_F^4 | | 20 | ns | SDO/SDIO output low to output high transition. | ¹ The $\overline{\text{CS}}$, SCLK, SDI, and SDO pins are not internally pulled up or down; they must be driven for proper operation. analog.com Rev. D | 12 of 30 $^{^2}$ Limits based on characterization results, characterized with $f_{SCLK} = 5$ MHz and bus load capacitance of 100 pF; not production tested. $^{^3}$ The timing values are measured corresponding to the input thresholds (V_{IL} and V_{IH}) given in Table 9. ⁴ Output rise and fall times measured with capacitive load of 150 pF. # **SERIAL COMMUNICATIONS** Figure 18. SPI 3-Wire Read/Write Figure 19. SPI 4-Wire Read Figure 20. SPI 4-Wire Write # I²C With $\overline{\text{CS}}$ tied high to $V_{\text{DD I/O}}$, the ADXL313 is in I²C mode, requiring a simple 2-wire connection, as shown in Figure 21. The ADXL313 conforms to the *UM10204 I*²*C-Bus Specification and User Manual*, Rev. 03—19 June 2007, available from NXP Semiconductor. It supports standard (100 kHz) and fast (400 kHz) data transfer modes if the bus parameters given in Table 11 and Table 12 are met. Single- or multiple-byte reads/writes are supported, as shown in Figure 22. With the ALT ADDRESS pin high, the 7-bit I²C address for the device is 0x1D, followed by the R/W bit. This translates to 0x3A for a write and 0x3B for a read. An alternate I²C address of 0x53 (followed by the R/W bit) can be chosen by grounding the ALT ADDRESS pin (Pin 23). This translates to 0xA6 for a write and 0xA7 for a read. Figure 21. I²C Connection Diagram (Address 0x53) If other devices are connected to the same I^2C bus, the nominal operating voltage level of these other devices cannot exceed $V_{DD\ I/O}$ by more than 0.3 V. External pull-up resistors, R_P , are necessary for proper I^2C operation. To ensure proper operation, refer to the analog.com Rev. D | 13 of 30 **Data Sheet** # **SERIAL COMMUNICATIONS** UM10204 I²C-Bus Specification and User Manual, Rev. 03—19 June 2007, when selecting pull-up resistor values. Table 11. I²C Digital Input/Output | | | | Limit ¹ | | |---|--|---------------------------|---------------------------|------| | Parameter | Test Conditions/Comments | Min | Max | Unit | | Digital Input | | | | | | Low Level Input Voltage (V _{IL}) | | | 0.3 × V _{DD I/O} | V | | High Level Input Voltage (VIH) | | 0.7 × V _{DD
I/O} | | V | | Low Level Input Current (I _{IL}) | $V_{IN} = V_{DD\ I/O}$ | | 0.1 | μA | | High Level Input Current (I _{IH}) | V _{IN} = 0 V | -0.1 | | μA | | Digital Output | | | | | | Low Level Output Voltage (V _{OL}) | $V_{DD I/O}$ < 2 V, I_{OL} = 3 mA | | 0.2 × V _{DD I/O} | V | | | $V_{DD I/O} \ge 2 V$, $I_{OL} = 3 mA$ | | 400 | mV | | Low Level Output Current (I _{OL}) | $V_{OL} = V_{OL, max}$ | 3 | | mA | | Pin Capacitance | $f_{IN} = 1 \text{ MHz}, V_{IN} = 2.5 \text{ V}$ | | 8 | pF | ¹ Limits based on characterization results; not production tested. | SINGLE-B | YTE WRITI | E | | | | | | | | | | | | | | | |----------|-----------|--------------------------|-----|--------------------|-----|--------------------|---------------|------|------|-----|------|------|------|---|------|------| | MASTER | START | SLAVE ADDRESS
+ WRITE | | REGISTER
ADDESS | | REGISTER
ADDESS | | STOP | | | | | | | | | | SLAVE | | | ACK | | ACK | | ACK | | | | | | | | | | | MULTIPLE | -BYTE WR | RITE | | | | | | | | | | | | | | | | MASTER | START | SLAVE ADDRESS
+ WRITE | | REGISTER
ADDESS | | DATA | | | DATA | | STOP | | | | | | | SLAVE | | | ACK | | ACK | | ACK | | | ACK | | | | | | | | SINGLE-B | YTE READ | 1 | | | | | | 1 | | | | | | | | | | MASTER | START | SLAVE ADDRESS
+ WRITE | | REGISTER
ADDESS | | START1 SLAVE | ADDR
WRITE | ESS | | | | NACK | STOP | | | | | SLAVE | | | ACK | | ACK | | | | ACK | DA | .TA | | | | | | | MULTIPLE | -BYTE DE | AD | | <u> </u> | | <u> </u> | | | | | | | | | | | | | START | SLAVE ADDRESS
+ WRITE | | REGISTER
ADDESS | | START1 SLAVE | ADDR
WRITE | ESS | | | | ACK | | | NACK | STOP | | SLAVE | | | ACK | | ACK | | | | ACK | DA | TA | | DAT | Ά | | | - NOTES 1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START. 2. THE SHADED AREAS REPRESENT WHEN THE DEVICE IS LISTENING. Figure 22. I²C Device Addressing 133 Table 12. I^2C Timing ($T_A = 25^{\circ}C$, $V_S = V_{DD \ I/O} = 3.3 \text{ V}$) | | | Limit ^{1, 2} | | | |--------------------------------------|-----|-----------------------|------|--| | Parameter | Min | Max | Unit | Description | | f _{SCL} | | 400 | kHz | SCL clock frequency | | t ₁ | 2.5 | | μs | SCL cycle time | | t_2 | 0.6 | | μs | SCL high time | | t ₃ | 1.3 | | μs | SCL low time | | t_4 | 0.6 | | μs | Start/repeated start condition hold time | | t ₅ | 100 | | ns | Data setup time | | t ₆ ^{3, 4, 5, 6} | 0 | 0.9 | μs | Data hold time | | t ₇ | 0.6 | | μs | Setup time for repeated start | | t ₈ | 0.6 | | μs | Stop condition setup time | analog.com Rev. D | 14 of 30 # **SERIAL COMMUNICATIONS** Table 12. I^2C Timing ($T_A = 25^{\circ}C$, $V_S = V_{DD \ I/O} = 3.3 \ V$) | | Liı | mit ^{1, 2} | _ | | |-----------------|--------------------------------------|---------------------|------|--| | Parameter | Min | Max | Unit | Description | | t ₉ | 1.3 | | μs | Bus-free time between a stop condition and a start condition | | t ₁₀ | | 300 | ns | Rise time of both SCL and SDA when receiving | | | 0 | | ns | Rise time of both SCL and SDA when receiving or transmitting | | t ₁₁ | | 250 | ns | Fall time of SDA when receiving | | | | 300 | ns | Fall time of both SCL and SDA when transmitting | | | 20 + 0.1 C _b ⁷ | | ns | Fall time of both SCL and SDA when transmitting or receiving | | C_b | | 400 | pF | Capacitive load for each bus line | - 1 Limits based on characterization results, with f_{SCL} = 400 kHz and a 3 mA sink current; not production tested. - 2 $\,$ All values referred to the V_{IH} and the V_{IL} levels given in Table 11. - 3 t₆ is the data hold time that is measured from the falling edge of SCL. It applies to data in transmission and acknowledge. - ⁴ A transmitting device must internally provide an output hold time of at least 300 ns for the SDA signal (with respect to V_{IH, min} of the SCL signal) to bridge the undefined region of the falling edge of SCL. - The maximum t₆ value must be met only if the device does not stretch the low period (t₃) of the SCL signal. - The maximum value for t_6 is a function of the clock low time (t_3) , the clock rise time (t_{10}) , and the minimum data setup time $(t_{5(min)})$. This value is calculated as $t_{6(max)} = t_3 t_{10} t_{5(min)}$. - ⁷ C_b is the total capacitance of one bus line in picofarads. Figure 23. I²C Timing Diagram analog.com Rev. D | 15 of 30 #### **INTERRUPTS** The ADXL313 provides two output pins for driving interrupts: INT1 and INT2. Both interrupt pins are push-pull, low impedance pins with output specifications shown in Table 13. The default configuration of the interrupt pins is active high. This can be changed to active low by setting the INT_INVERT bit in the DATA_FORMAT register (Address 0x31). All functions can be used simultaneously, with the only limiting feature being that some functions may need to share interrupt pins. Interrupts are enabled by setting the appropriate bit in the INT_EN-ABLE register (Address 0x2E) and are mapped to either the INT1 or INT2 pin based on the contents of the INT_MAP register (Address 0x2F). When initially configuring the interrupt pins, it is recommended that the functions and interrupt mapping be completed before enabling the interrupts. When changing the configuration of an interrupt, it is recommended that the interrupt be disabled first, by clearing the bit corresponding to that function in the INT_ENABLE register, and then the function be reconfigured before enabling the interrupt again. Configuration of the functions while the interrupts are disabled helps to prevent the accidental generation of an interrupt. The interrupt functions are latched and cleared either by reading the data registers (Address 0x32 to Address 0x37) until the interrupt condition is no longer valid for the data-related interrupts or by reading the INT_SOURCE register (Address 0x30) for the remaining interrupts. The following sections describe the interrupts that can be set in the INT_ENABLE register and monitored in the INT_SOURCE register. Table 13. Interrupt Pin Digital Output | | | | Limit ¹ | | |--|--|---------------------------|---------------------------|------| | Parameter | Test Conditions/Comments | Min | Max | Unit | | Digital Output | | | | | | Low Level Output Voltage (V _{OL}) | I _{OL} = 300 μA | | 0.2 × V _{DD I/O} | V | | High Level Output Voltage (V _{OH}) | I _{OH} = -150 μA | 0.8 × V _{DD I/O} | | V | | Low Level Output Current (I _{OL}) | V _{OL} = V _{OL, max} | 300 | | μΑ | | High Level Output Current (I _{OH}) | $V_{OH} = V_{OH, min}$ | | -150 | μΑ | | Pin Capacitance | $f_{IN} = 1 \text{ MHz}, V_{IN} = 2.5 \text{ V}$ | | 8 | pF | | Rise/Fall Time | | | | | | Rise Time (t _R) ² | C _{LOAD} = 150 pF | | 210 | ns | | Fall Time (t _F) ³ | C_{LOAD} = 150 pF
C_{LOAD} = 150 pF | | 150 | ns | Limits based on characterization results, not production tested. analog.com Rev. D | 16 of 30 $^{^2}$ $\,$ Rise time is measured as the transition time from V_OL, $_{\text{max}}$ to V_OH, $_{\text{min}}$ of the INTx pin. $^{^3}$ Fall time is measured as the transition time from $V_{OH, min}$ to $V_{OL, max}$ of the INTx pin. #### **INTERRUPTS** # **DATA READY** The DATA_READY bit is set when new data is available and is cleared when no new data is available. #### **ACTIVITY** The activity bit is set when acceleration greater than the value stored in the THRESH ACT register (Address 0x24) is sensed. # **INACTIVITY** The inactivity bit is set when acceleration of less than the value stored in the THRESH_INACT register (Address 0x25) is sensed for more time than is specified in the TIME_INACT register (Address 0x26). The maximum value for TIME INACT is 255 sec. #### **WATERMARK** The watermark bit is set when the number of samples in the FIFO equals the value stored in the samples bits in the FIFO CTL register (Address 0x38). The watermark bit is cleared automatically when the FIFO is read, and the content returns to a value below the value stored in the samples bits. # **OVERRUN** The overrun bit is set when new data replaces unread data. The precise operation of the overrun function depends on the FIFO mode. In bypass mode, the overrun bit is set when new data replaces unread data in the DATA_Xx, DATA_Yx, and DATA_Zx registers (Address 0x32 to Address 0x37). In all other modes, the overrun bit is set when the FIFO is filled. The overrun bit is automatically cleared when the contents of FIFO are read. analog.com Rev. D | 17 of 30 #### **FIFO** The ADXL313 contains patent pending technology for an embedded memory management system with a 32-level FIFO that can be used to minimize host processor burden. This buffer has four modes: bypass, FIFO, stream, and trigger (see Table 42). Each mode is selected by the settings of the FIFO_MODE bits in the FIFO CTL register (Address 0x38). #### **BYPASS MODE** In bypass mode, the FIFO is not operational and, therefore, remains empty. #### **FIFO MODE** In FIFO mode, data from measurements of the x-, y-, and z-axes are stored in the FIFO. When the number of samples in the FIFO equals the level specified in the samples bits of the FIFO_CTL register (Address 0x38), the watermark interrupt is set. The FIFO continues accumulating samples until it is full (32 samples from measurements of the x-, y-, and z-axes) and then stops collecting data. After the FIFO stops collecting data, the device continues to operate; therefore, features such as activity detection can be used after the FIFO is full. The watermark interrupt continues to occur until the number of samples in the FIFO is less than the value stored in the samples bits of the FIFO_CTL register. #### STREAM MODE In stream mode, data from measurements of the x-, y-, and z-axes is stored in FIFO. When the number of samples in the
FIFO equals the level specified in the samples bits of the FIFO_CTL register (Address 0x38), the watermark interrupt is set. FIFO continues accumulating samples and holds the latest 32 samples from measurements of the x-, y-, and z-axes, discarding older data as new data arrives. The watermark interrupt continues occurring until the number of samples in FIFO is less than the value stored in the samples bits of the FIFO_CTL register. #### TRIGGER MODE In trigger mode, the FIFO accumulates samples, holding the latest 32 samples from measurements of the x-, y-, and z-axes. After a trigger event occurs and an interrupt is sent to the INT1 or INT2 pin (determined by the trigger bit in the FIFO_CTL register), FIFO keeps the last n samples (where n is the value specified by the samples bits in the FIFO_CTL register) and then operates in FIFO mode, collecting new samples only when the FIFO is not full. A delay of at least 5 µs must be present between the trigger event occurring and the start of reading data from the FIFO to allow the FIFO to discard and retain the necessary samples. Additional trigger events cannot be recognized until the trigger mode is reset. To reset the trigger mode, set the device to bypass mode and then set the device back to trigger mode. Note that the FIFO data must be read first because placing the device into bypass mode clears FIFO. #### RETRIEVING DATA FROM FIFO The FIFO data is read through the DATA_Xx, DATA_Yx, and DA-TA_Zx registers (Address 0x32 to Address 0x37). When the FIFO is in FIFO, stream, or trigger mode, reads to the DATA_Xx, DATA_xY, and DATA_Zx registers read data stored in the FIFO. Each time data is read from the FIFO, the oldest x-, y-, and z-axes data is placed into the DATA_Xx, DATA_Yx, and DATA_Zx registers. If a single-byte read operation is performed, the remaining bytes of data for the current FIFO sample are lost. Therefore, all axes of interest must be read in a burst (or multiple-byte) read operation. To ensure that the FIFO has completely popped (that is, that new data has completely moved into the DATA_Xx, DATA_Yx, and DATA_Zx registers), there must be at least 5 μs between the end of reading the data registers and the start of a new read of the FIFO or a read of the FIFO_STATUS register (Address 0x39). The end of reading a data register is signified by the transition from Register 0x37 to Register 0x38 or by the $\overline{\mbox{CS}}$ pin going high. For SPI operation at 1.6 MHz or less, the register addressing portion of the transmission is a sufficient delay to ensure that the FIFO has completely popped. For SPI operation greater than 1.6 MHz, it is necessary to deassert the $\overline{\text{CS}}$ pin to ensure a total delay of 5 μ s; otherwise, the delay is not sufficient. The total delay necessary for 5 MHz operation is at most 3.4 μ s. This is not a concern when using I²C mode because the communication rate is low enough to ensure a sufficient delay between FIFO reads. analog.com Rev. D | 18 of 30 #### **SELF TEST** The ADXL313 incorporates a self test feature that effectively tests its mechanical and electronic systems simultaneously. When the self test function is enabled (via the SELF TEST bit in the DA-TA FORMAT register, Address 0x31), an electrostatic force is exerted on the mechanical sensor. This electrostatic force moves the mechanical sensing element in the same manner as acceleration, and it is additive to the acceleration experienced by the device. This added electrostatic force results in an output change in the x-, y-, and z-axes. Because the electrostatic force is proportional to V_S^2 , the output change varies with V_S . The self test feature of the ADXL313 also exhibits a bimodal behavior. However, the limits shown in Table 1 and Table 14 are valid for all potential self test values across the entire allowable voltage range. Use of the self test feature at data rates of less than 100 Hz or at 1600 Hz may yield values outside these limits. Therefore, the part must be in normal power operation (LOW POWER bit = 0 in the BW RATE register, Address 0x2C) and be placed into a data rate of 100 Hz through 800 Hz or 3200 Hz for the self test function to operate correctly. Table 14. Self Test Output ($T_A = 25$ °C, 2.0 $V \le V_S \le 3.6 V$) | Axis | Min (g) | Max (g) | |------|---------|---------| | X | 0.20 | 2.36 | | Υ | -2.36 | +0.20 | | Z | 0.30 | 3.70 | analog.com Rev. D | 19 of 30 # **REGISTER MAP** Table 15. Register Map | Reg. | Name | Туре | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Reset
Value | |--------------|---------------|------|----------------|-------------------|----------------|------------|-----------------|--------------|-----------|----------|----------------| | 0x00 | DEVID_0 | R | | | | DEVID | _0[7:0] | | | | 0xAD | | 0x01 | DEVID_1 | R | | | | DEVID | | | | | 0x1D | | 0x02 | PARTID | R | | | | |
ID[7:0] | | | | 0xCB | | 0x03 | REVID | R | | | | | D[7:0] | | | | 0x00 | | 0x04 | XID | R | | | | XID | | | | | 0x00 | | 0x05 to 0x17 | Reserved | RSVD | | | | Rese | | | | | | | 0x18 | SOFT_RESET | R/W | | | | SOFT_RI | ESET[7:0] | | | | 0x00 | | 0x19 to 0x1D | Reserved | RSVD | | | | Rese | erved | | | | | | 0x1E | OFSX | R/W | | | | OFS | X[7:0] | | | | 0x00 | | 0x1F | OFSY | R/W | | | | OFS' | Y[7:0] | | | | 0x00 | | 0x20 | OFSZ | R/W | | | | OFS | <u>Z</u> [7:0] | | | | 0x00 | | 0x21 to 0x23 | Reserved | RSVD | | | | Rese | erved | | | | | | 0x24 | THRESH_ACT | R/W | | | | THRESH | _ACT[7:0] | | | | 0x00 | | 0x25 | THRESH_INACT | R/W | | THRESH_INACT[7:0] | | | | | | | | | 0x26 | TIME_INACT | R/W | | TIME_INACT[7:0] | | | | | | | | | 0x27 | ACT_INACT_CTL | R/W | ACT_AC/DC | ACT_X | ACT_Y | ACT_Z | INACT_AC/
DC | INACT_X | INACT_Y | INACT_Z | 0x00 | | 0x28 to 0x2B | Reserved | RSVD | | | | Rese | erved | | | | | | 0x2C | BW_RATE | R/W | 0 | 0 | 0 | LOW_POWER | | Ra | te[3:0] | | 0x0A | | 0x2D | POWER_CTL | R/W | 0 | I2C_
DISABLE | Link | AUTO_SLEEP | Measure | Sleep | Wake- | -up[1:0] | 0x00 | | 0x2E | INT_ENABLE | R/W | DATA_
READY | 0 | 0 | Activity | Inactivity | 0 | Watermark | Overrun | 0x00 | | 0x2F | INT_MAP | R/W | DATA_
READY | 0 | 0 | Activity | Inactivity | 0 | Watermark | Overrun | 0x00 | | 0x30 | INT_SOURCE | R₩ | DATA_
READY | 0 | 0 | Activity | Inactivity | 0 | Watermark | Overrun | 0x02 | | 0x31 | DATA_FORMAT | R/W | SELF_TEST | SPI | INT_
INVERT | 0 | FULL_RES | Justify | Rang | ge[1:0] | 0x00 | | 0x32 | DATA_X0 | R | | | | DATA_ | X0[7:0] | | - | | 0x00 | | 0x33 | DATA_X1 | R | | | | DATA_ | X1[7:0] | | | | 0x00 | | 0x34 | DATA_Y0 | R | | | | DATA_ | Y0[7:0] | | | | 0x00 | | 0x35 | DATA_Y1 | R | | | | DATA_ | Y1[7:0] | | | | 0x00 | | 0x36 | DATA_Z0 | R | | | | DATA_ | Z0[7:0] | | | | 0x00 | | 0x37 | DATA_Z1 | R | | | | DATA_ | Z1[7:0] | | | | 0x00 | | 0x38 | FIFO_CTL | R/W | FIFO_MC | DE[1:0] | Trigger | | 9 | Samples[4:0] | | | 0x00 | | 0x39 | FIFO_STATUS | R | FIFO_TRIG | 0 | | 1 | Enti | ies | | | 0x00 | analog.com Rev. D | 20 of 30 #### **REGISTER MAP** #### REGISTER DEFINITIONS # Register 0x00—DEVID_0 (Read Only) #### Table 16. Register 0x00 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----|----|----|----|----|----|----|----| | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | The DEVID_0 register holds a fixed device ID identifying Analog Devices, Inc., as the device manufacturer. The default value of this register is 0xAD. # Register 0x01—DEVID_1 (Read Only) #### Table 17. Register 0x01 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----|----|----|----|----|----|----|----| | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | The DEVID_1 register holds a fixed device ID that further enhances traceability of the ADXL313. The default value of this register is 0x1D. # Register 0x02—PARTID (Read Only) #### Table 18. Register 0x02 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----|----|----|----|----|----|----|----| | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | The PARTID register identifies the device as an ADXL313. The default hexadecimal value stored in this register, 0xCB, is meant to be interpreted as an octal value that corresponds to 313. If the user does not read back 0xCB from this register, assume that the device under test is not an ADXL313 device. # Register 0x03—REVID (Read Only) #### Table 19. Register 0x03 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | |----|----|----|----|----------|----|----|----|--| | | | | RE | VID[7:0] | | | | | The number contained in the REVID register represents the silicon revision of the ADXL313. This number is incremented for any major silicon revision. # Register 0x04—XID (Read Only) #### Table 20. Register 0x04 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | |----|----|----|----|----------|----|----|----|--| | | | | Х | (ID[7:0] | | | | | The XID register stores a semiunique serial number that is generated from the device trim and calibration process. # Register 0x18—SOFT_RESET (Read/Write) #### Table 21. Register 0x18 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | |----|----|----|------|----------|-----|----|----|--| | | | | SOFT | RESET[7: | :0] | | | | Writing a value of 0x52 to Register 0x18 triggers the soft reset function of the ADXL313. The soft reset returns the ADXL313 to the beginning of its power-on initialization routine, clearing the configuration settings that were written to the memory map, which allows easy reconfiguration of the ADXL313 device. # Register 0x1E—OFSX (Read/Write), Register 0x1F—OFSY (Read/Write), Register 0x20—OFSZ (Read/Write) Table 22. Register 0x1E, Register 0x1F, and Register 0x20 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | |----|----|----|----|----------|----|----|----|--| | | | | Ol | FSX[7:0] | | | | | | | | | Ol | FSY[7:0] | | | | | | | | | Ol | FSZ[7:0] | | | | | The OFSX, OFSY, and OFSZ registers are each eight bits and offer user set offset adjustments in twos complement format, with a scale factor of 3.9 mg/LSB (that is, 0x7F = 0.5 g). The value stored in the offset registers is automatically added to the acceleration data, and the resulting
value is stored in the output data registers. # Register 0x24—THRESH_ACT (Read/Write) # Table 23. Register 0x24 | rabie . | zs. Registi | er ux 24 | | | | | | | |---------|-------------|----------|-------|----------|-----|----|----|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | THRES | SH_ACT[7 | :0] | | | | The THRESH_ACT register is eight bits and holds the threshold value for detecting activity. The data format is unsigned; therefore, the magnitude of the activity event is compared with the value in the THRESH_ACT register. The scale factor is 15.625 mg/LSB. A value of 0 may result in undesirable behavior if the activity interrupt is enabled. # Register 0x25—THRESH_INACT (Read/Write) # Table 24. Register 0x25 | | · · · · · · · · · · · · · · · · · · · | | | | | | | | |----|---------------------------------------|----|-------|----------|------|----|----|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | THRES | H_INACT[| 7:0] | | | | The THRESH_INACT register is eight bits and holds the threshold value for detecting inactivity. The data format is unsigned; therefore, the magnitude of the inactivity event is compared with the value in the THRESH_INACT register. The scale factor is 15.625 mg/LSB. A value of 0 may result in undesirable behavior if the inactivity interrupt is enabled. analog.com Rev. D | 21 of 30 #### **REGISTER MAP** # Register 0x26—TIME_INACT (Read/Write) Table 25. Register 0x26 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----|----|----|------|------------|----|----|----| | | | | TIME | _INACT[7:0 |)] | | | The TIME_INACT register is eight bits and contains an unsigned time value. Acceleration must be less than the value in the THRESH_INACT register for the amount of time represented by TIME_INACT for inactivity to be declared. The scale factor is 1 sec/LSB. Unlike the other interrupt functions, which use unfiltered data (see the Threshold section), the inactivity function uses filtered output data. At least one output sample must be generated for the inactivity interrupt to be triggered. This results in the function appearing unresponsive if the TIME_INACT register is set to a value less than the time constant of the output data rate. A value of 0 results in an interrupt when the output data is less than the value in the THRESH_INACT register. # Register 0x27—ACT_INACT_CTL (Read/Write) Table 26. Register 0x27—Bits[D7:D4] | Table 10. Regions ext. Energy in | | | | | | | |----------------------------------|--------------------|---------|---------|--|--|--| | D7 | D6 | D5 | D4 | | | | | ACT_AC/DC | ACT_X | ACT_Y | ACT_Z | | | | | Table 27. Registe | r 0x27—Bits[D3:D0] | | | | | | | D3 | D2 | D1 | D0 | | | | | INACT_AC/DC | INACT_X | INACT_Y | INACT_Z | | | | # ACT_AC/DC and INACT_AC/DC Bits A setting of 0 selects dc-coupled operation, and a setting of 1 enables ac-coupled operation. In dc-coupled operation, the current acceleration magnitude is compared directly with THRESH_ACT and THRESH_INACT to determine whether activity or inactivity is detected. In ac-coupled operation for activity detection, the acceleration value at the start of activity detection is taken as a reference value. New samples of acceleration are then compared to this reference value and, if the magnitude of the difference exceeds the THRESH_ACT value, the device triggers an activity interrupt. Similarly, in ac-coupled operation for inactivity detection, a reference value is used for comparison and is updated whenever the device exceeds the inactivity threshold. After the reference value is selected, the device compares the magnitude of the difference between the reference value and the current acceleration with THRESH_INACT. If the difference is less than the value in THRESH_INACT for the time in TIME_INACT, the device is considered inactive and the inactivity interrupt is triggered. # ACT_x and INACT_x Bits A setting of 1 enables x-, y-, or z-axis participation in detecting activity or inactivity. A setting of 0 excludes the selected axis from participation. If all axes are excluded, the function is disabled. For activity detection, all participating axes are logically OR'ed, causing the activity function to trigger when any of the participating axes exceeds the threshold. For inactivity detection, all participating axes are logically AND'ed, causing the inactivity function to trigger only if all participating axes are below the threshold for the specified period of time. # Register 0x2C—BW_RATE (Read/Write) Table 28. Register 0x2C | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----|----|----|-----------|----|----|------|----| | 0 | 0 | 0 | LOW_POWER | | F | Rate | | # LOW_POWER Bit A setting of 0 in the LOW_POWER bit selects normal operation, and a setting of 1 selects reduced power operation, which has somewhat higher noise (see the Power Modes section for details). #### **Rate Bits** These bits select the device bandwidth and output data rate (see Table 7 and Table 8 for details). The default value is 0x0A, which translates to a 100 Hz output data rate. Select an output data rate that is appropriate for the communication protocol and frequency selected. Selecting too high of an output data rate with a low communication speed results in samples being discarded. # Register 0x2D—POWER_CTL (Read/Write) Table 29. Register 0x2D—Bits[D7:D4] | D7 | D6 | D5 | D4 | |--------------------|------------------|------|------------| | 0 | I2C_DISABLE | Link | AUTO_SLEEP | | Table 30. Register | 0x2D—Bits[D3:D0] | | | | D3 | D2 | D1 | D0 | | Measure | Sleep | Wa | ke-up | #### **I2C** Disable Bit The ADXL313 is capable of communicating via SPI or I²C transmission protocols. Typically, these protocols do not overlap; however, situations may arise where SPI transactions can imitate an I²C start command. This causes the ADXL313 to respond unexpectedly, causing a communications issue with other devices on the network. To ensure that the ADXL313 does not interpret SPI commands as an I²C start condition, assert the I2C_Disable bit. # Link Bit A setting of 1 in the link bit with both the activity and inactivity functions enabled delays the start of the activity function until inactivity is detected. After activity is detected, inactivity detection begins, preventing the detection of activity. This bit serially links the activity and inactivity functions. When this bit is set to 0, the inactivity analog.com Rev. D | 22 of 30 #### **REGISTER MAP** and activity functions are concurrent. Additional information can be found in the Link Mode section. When clearing the link bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the link bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared. # **AUTO SLEEP Bit** If the link bit is set, a setting of 1 in the AUTO_SLEEP bit sets the ADXL313 to switch to sleep mode when inactivity is detected (that is, when acceleration is below the THRESH_INACT value for at least the time indicated by TIME_INACT). A setting of 0 disables automatic switching to sleep mode. See the description of the sleep bit in the Sleep Bit section for more information. When clearing the AUTO_SLEEP bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the AUTO_SLEEP bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared. #### **Measure Bit** A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL313 powers up in standby mode with minimum power consumption. #### Sleep Bit A setting of 0 in the sleep bit puts the part into the normal mode of operation, and a setting of 1 places the part into sleep mode. Sleep mode suppresses DATA_READY (see Register 0x2E, Register 0x2F, and Register 0x30), stops transmission of data to the FIFO, and switches the sampling rate to one specified by the wake-up bits. In sleep mode, only the activity function can be used. When clearing the sleep bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the sleep bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared. #### Wake-Up Bits These bits control the frequency of readings in sleep mode as described in Table 31. Table 31. Frequency of Readings in Sleep Mode | | Setting | | | |----|---------|----------------|--| | D1 | D0 | Frequency (Hz) | | | 0 | 0 | 8 | | | 0 | 1 | 4 | | | 1 | 0 | 2 | | | 1 | 1 | 1 | | # Register 0x2E—INT_ENABLE (Read/Write) Table 32. Register 0x2E—Bits[D7:D4] | D7 | D6 | D5 | D4 | | | | | |------------------------|-------------------------------------|-----------|----------|--|--|--|--| | DATA_READY | 0 | 0 | Activity | | | | | | Table 33. Register 0x. | Table 33. Register 0x2E—Bits[D3:D0] | | | | | | | | D3 | D2 | D1 | D0 | | | | | | Inactivity | 0 | Watermark | Overrun | | | | | Setting bits in this register to a value of 1 enables their respective functions to generate interrupts, whereas a value of 0 prevents the functions from generating interrupts. The DATA_READY, watermark, and overrun bits enable only the interrupt output; the functions are always enabled. It is recommended that interrupts be configured before enabling their outputs. # Register 0x2F—INT MAP (Read/Write) Table 34. Register 0x2F—Bits[D7:D4] | D7 | D6 | D5 | D4 | |------------------------
----------------|-----------|----------| | DATA_READY | 0 | 0 | Activity | | Table 35. Register 0x. | 2F—Bits[D3:D0] | | | | D3 | D2 | D1 | D0 | | Inactivity | 0 | Watermark | Overrun | Any bits set to 0 in this register send their respective interrupts to the INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2 pin. All selected interrupts for a given pin are OR'ed. # Register 0x30—INT_SOURCE (Read Only) Table 36. Register 0x30—Bits[D7:D4] | D7 | D6 | D5 | D4 | | | | | |-----------------------|-------------------------------------|-----------|----------|--|--|--|--| | DATA_READY | 0 | 0 | Activity | | | | | | Table 37. Register 0x | Table 37. Register 0x30—Bits[D3:D0] | | | | | | | | D3 | D2 | D1 | D0 | | | | | | Inactivity | 0 | Watermark | Overrun | | | | | Bits set to 1 in this register indicate that their respective functions have triggered an event, whereas a value of 0 indicates that the corresponding event has not occurred. The DATA_READY, watermark, and overrun bits are always set if the corresponding events occur, regardless of the INT_ENABLE register settings, and analog.com Rev. D | 23 of 30 #### **REGISTER MAP** are cleared by reading data from the DATA_Xx, DATA_Yx, and DATA_Zx registers. The DATA_READY and watermark bits may require multiple reads, as indicated in the FIFO mode descriptions in the FIFO section. Other bits, and the corresponding interrupts, are cleared by reading the INT_SOURCE register. # Register 0x31—DATA_FORMAT (Read/Write) #### Table 38. Register 0x31 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----------|-----|------------|----|----------|---------|----|------| | SELF_TEST | SPI | INT_INVERT | 0 | FULL_RES | Justify | Ra | inge | The DATA_FORMAT register controls the presentation of data to Register 0x32 through Register 0x37. All data, except that for the ±4 *g* range, must be clipped to avoid rollover. #### SELF_TEST Bit A setting of 1 in the SELF_TEST bit applies a self test force to the sensor, causing a shift in the output data. A value of 0 disables the self test force. #### **SPI Bit** A value of 1 in the SPI bit sets the device to 3-wire SPI mode, and a value of 0 sets the device to 4-wire SPI mode. # **INT_INVERT Bit** A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a value of 1 sets the interrupts to active low. # **FULL_RES Bit** When this bit is set to a value of 1, the device is in full resolution mode, where the output resolution increases with the *g* range set by the range bits to maintain 1024 LSB/*g* sensitivity. When the FULL_RES bit is set to 0, the device is in 10-bit mode, and the range bits determine the maximum *g* range and scale factor. # **Justify Bit** A setting of 1 in the justify bit selects left (MSB) justified mode, and a setting of 0 selects right justified (LSB) mode with sign extension. #### Range Bits These bits set the *g* range as described in Table 39. Table 39. g Range Setting | Setting | | | | |---------|----|-----------|--| | D1 | D0 | Range (g) | | | 0 | 0 | ±0.5 | | | 0 | 1 | ±1 | | | 1 | 0 | ±2 | | | 1 | 1 | ±4 | | Register 0x32 and Register 0x33—DATA_X0, DATA_X1 (Read Only), Register 0x34 and Register 0x35—DATA_Y0, DATA_Y1 (Read Only), Register 0x36 and Register 0x37—DATA_Z0, DATA_Z1 (Read Only) Table 40. Register 0x32 and Register 0x33 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | |----|--------------|----|--------------|------------|----|----|----|--|--|--| | | | | DATA_X0[7:0] | | | | | | | | | | | | DAT | A_X1[7:0] | | | | | | | | | DATA_Y0[7:0] | | | | | | | | | | | | | | DAT | A_Y1[7:0] | | | | | | | | | | | DAT | TA_Z0[7:0] | | | | | | | | | | | DAT | TA_Z1[7:0] | | | | | | | These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold the output data for each axis. Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis. The output data is twos complement, with DATA_x0 as the least significant byte and DATA_x1 as the most significant byte, where x represents X, Y, or Z. The DATA_FORMAT register (Address 0x31) controls the format of the data. It is recommended that a multiple-byte read of all registers be performed to prevent a change in data between reads of sequential registers. # Register 0x38—FIFO_CTL (Read/Write) Table 41. Register 0x38 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |----------|----|---------|----|----|--------|----|----| | FIFO_MOD | DΕ | Trigger | | | Sample | S | | # FIFO_MODE Bits These bits set the FIFO mode, as described in Table 42. Table 42. FIFO Modes | Setting | | | | |---------|----|---------|---| | D7 | D6 | Mode | Function | | 0 | 0 | Bypass | FIFO is bypassed. | | 0 | 1 | FIFO | FIFO collects up to 32 values and then stops collecting data, collecting new data only when FIFO is not full. | | 1 | 0 | Stream | FIFO holds the last 32 data values. When FIFO is full, the oldest data is overwritten with newer data. | | 1 | 1 | Trigger | When triggered by the trigger bit, FIFO holds the last data samples before the trigger event and then continues to collect data until full. New data is collected only when FIFO is not full. | analog.com Rev. D | 24 of 30 #### **REGISTER MAP** # **Trigger Bit** A value of 0 in the trigger bit links the trigger event to INT1, and a value of 1 links the trigger event to INT2. # Samples Bits The function of these bits depends on the FIFO mode selected (see Table 43). Entering a value of 0 in the samples bits immediately sets the watermark status bit in the INT_SOURCE register, regardless of which FIFO mode is selected. Undesirable operation may occur if a value of 0 is used for the samples bits when trigger mode is used. Table 43. Samples Bits Functions | FIFO Mode | Samples Bits Function | |-----------|---| | Bypass | None. | | FIFO | Specifies how many FIFO entries are needed to trigger a watermark interrupt. | | Stream | Specifies how many FIFO entries are needed to trigger a watermark interrupt. | | Trigger | Specifies how many FIFO samples are retained in the FIFO buffer before a trigger event. | # Register 0x39—FIFO_STATUS (Read Only) #### Table 44. Register 0x39 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----------|----|----|----|----|-------|----|----| | FIFO_TRIG | 0 | | | En | tries | | | # FIFO_TRIG Bit A 1 in the FIFO_TRIG bit corresponds to a trigger event occurring, and a 0 means that a FIFO trigger event has not occurred. # **Entries Bits** These bits report how many data values are stored in the FIFO. Access to collect the data from the FIFO is provided through the DATA_Xx, DATA_Yx, and DATA_Zx registers. FIFO reads must be done in burst or multiple-byte mode because each FIFO level is cleared after any read (single- or multiple-byte) of the FIFO. The FIFO stores a maximum of 32 entries, which equates to a maximum of 33 entries available at any given time because an additional entry is available at the output filter of the device. analog.com Rev. D | 25 of 30 #### **APPLICATIONS INFORMATION** #### POWER SUPPLY DECOUPLING A 1 μ F tantalum capacitor (C_S) at V_S and a 0.1 μ F ceramic capacitor ($C_{I/O}$) at $V_{DD\ I/O}$ placed close to the ADXL313 supply pins is recommended to adequately decouple the accelerometer from noise on the power supply. If additional decoupling is necessary, a resistor or ferrite bead, no larger than 100 Ω , in series with V_S may be helpful. Additionally, increasing the bypass capacitance on V_S to a 10 μ F tantalum capacitor in parallel with a 0.1 μ F ceramic capacitor may also improve noise. Take care to ensure that the connection from the ADXL313 ground to the power supply ground has low impedance because noise transmitted through ground has an effect similar to noise transmitted through V_S . It is recommended that V_S and $V_{DD\ I/O}$ be separate supplies to minimize digital clocking noise on the V_S supply. If this is not possible, additional filtering of the supplies as previously mentioned may be necessary. Figure 24. Application Diagram # MECHANICAL CONSIDERATIONS FOR MOUNTING Mount the ADXL313 on the PCB in a location close to a hard mounting point of the PCB to the case. Mounting the ADXL313 at an unsupported PCB location, as shown in Figure 25, may result in large, apparent measurement errors due to undamped PCB vibration. Placing the accelerometer near a hard mounting point ensures that any PCB vibration at the accelerometer is above the accelerometer's mechanical sensor resonant frequency and, therefore, effectively invisible to the accelerometer. Multiple mounting points close to the sensor and/or a thicker PCB also help to reduce the effect of system resonance on the performance of the sensor. Figure 25. Incorrectly Placed Accelerometers #### ASYNCHRONOUS DATA READINGS Asynchronous readings of acceleration data can lead to accessing the acceleration data registers (Address 0x32 to Address 0x37) while they are being updated. To avoid this, it is recommended to either enable stream mode (see Table 42), or to synchronize the SPI/I²C transaction to the DATA_READY interrupt functionality, so that the host processor samples immediately after the DATA_READY interrupt goes high. #### **THRESHOLD** The lower output data rates are achieved by decimating a common sampling frequency inside the device. The activity detection function is performed using undecimated data. Because the bandwidth of the output data varies with the data rate and is lower than the bandwidth of the undecimated data, the high frequency and high g data that are used to determine activity may not be present if the output
of the accelerometer is examined. This may result in functions triggering when acceleration data does not appear to meet the conditions set by the user for the corresponding function. #### LINK MODE The function of the link bit in the POWER_CTL register (Address 0x2D) is to reduce the number of activity interrupts that the processor must service by setting the device to look for activity only after inactivity. For proper operation of this feature, the processor must still respond to the activity and inactivity interrupts by reading the INT_SOURCE register (Address 0x30) and, therefore, clearing the interrupts. If an activity interrupt is not cleared, the part cannot go into autosleep mode. # SLEEP MODE VS. LOW POWER MODE In applications where a low data rate and low power consumption are desired (at the expense of noise performance), it is recommended that low power mode be used. The use of low power mode preserves the functionality of the DATA_READY interrupt and the FIFO for postprocessing of the acceleration data. Sleep mode, while offering a low data rate and low power consumption, is not intended for data acquisition. However, when sleep mode is used in conjunction with the auto-sleep mode and the link mode, the part can automatically switch to a low power, low sampling rate mode when inactivity is detected. To prevent the generation of redundant inactivity interrupts, the inactivity interrupt is automatically disabled and activity is enabled. When the ADXL313 is in sleep mode, the host processor can also be placed into sleep mode or low power mode to save significant system power. When activity is detected, the accelerometer automatically switches back to the original data rate of the application and provides an activity interrupt that can be used to wake up the host processor. Similar to when inactivity occurs, detection of activity events is disabled and inactivity is enabled. analog.com Rev. D | 26 of 30 #### **APPLICATIONS INFORMATION** #### **USING SELF TEST** The self test change is defined as the difference between the acceleration output of an axis with self test enabled and the acceleration output of the same axis with self test disabled (see Endnote 4 of Table 1). This definition assumes that the sensor does not move between these two measurements because, if the sensor moves, a nonself test related shift corrupts the test. Proper configuration of the ADXL313 is also necessary for an accurate self test measurement. Set the part with a data rate greater than or equal to 100 Hz. This is done by ensuring that a value greater than or equal to 0x0A is written into the rate bits (Bit D3 through Bit D0) in the BW_RATE register (Address 0x2C). The part must also be placed into normal power operation by ensuring that the LOW_POWER bit in the BW_RATE register is cleared (LOW_POWER bit = 0) for accurate self test measurements. It is recommended that the part be set to full resolution, ±4 g mode to ensure that there is sufficient dynamic range for the entire self test shift. This is done by setting Bit D3 of the DATA_FORMAT register (Address 0x31) and writing a value of 0x03 to the range bits (Bit D1 and Bit D0) of the DATA_FORMAT register. This results in a high dynamic range for measurement and 1024 LSB/g sensitivity. After the part is configured for accurate self test measurement, several samples of x-, y-, and z-axis acceleration data should be retrieved from the sensor and averaged together. The number of samples averaged is a choice of the system designer, but a recommended starting point is 0.1 sec worth of data, which corresponds to 10 samples at 100 Hz data rate. Store and label the averaged values appropriately as the self test disabled data, that is, $X_{\text{ST_OFF}}, Y_{\text{ST_OFF}},$ and $Z_{\text{ST_OFF}}.$ Next, enable self test by setting Bit D7 of the DATA_FORMAT register (Address 0x31). The output needs some time (about four samples) to settle after enabling self test. After allowing the output to settle, take several samples of the x-, y-, and z-axis acceleration data, and average them. It is recommended that the same number of samples be taken for this average as was previously taken. Store and label these averaged values appropriately as the value with self test enabled, that is, $X_{\rm ST_ON}$, $Y_{\rm ST_ON}$, and $Z_{\rm ST_ON}$. Self test can then be disabled by clearing Bit D7 of the DATA_FORMAT register (Address 0x31). With the stored values for self test enabled and disabled, the self test change is as follows: $$X_{ST} = X_{ST_ON} - X_{ST_OFF}$$ $$Y_{ST} = Y_{ST_ON} - Y_{ST_OFF}$$ $$Z_{ST} = Z_{ST_ON} - Z_{ST_OFF}$$ Because the measured output for each axis is expressed in LSBs, X_{ST} , Y_{ST} , and Z_{ST} are also expressed in LSBs. These values can be converted to acceleration (g) by multiplying each value by the sensitivity, 1024 LSB/g, when configured for full resolution mode. When operating in 10-bit mode, the self test delta in LSBs varies according to the selected g range, even though the self test force, in g, remains unchanged. Using a range below $\pm 4 g$ may result in insufficient dynamic range and should be considered when selecting the range of operation for measuring self test. If the self test change is within the valid range, the test is considered successful. Generally, a part is considered to pass if the minimum magnitude of change is achieved. However, a part that changes by more than the maximum magnitude is not necessarily a failure # 3200 HZ AND 1600 HZ ODR DATA FORMATTING The following section applies for 3200 Hz and 1600 Hz output data rates only. This section can be ignored for all other data rates. For 3200 Hz and 1600 Hz output data rates, when the ADXL313 is configured for either a ±0.5 g output range or the full resolution mode is enabled, the LSB of the output data-word is always 0. If the acceleration data-word is right justified, this corresponds to Bit D0 of the DATA_x0 register, as shown in Figure 26 and Table 45. When data is left justified and the part is operating in $\pm 0.5~g$ mode, the LSB of the output data-word is Bit D6 of the DATAx0 register. In full resolution operation, the location of the LSB changes according to the selected output range. Table 45 and Figure 27 demonstrate how the position of the LSB changes when full resolution mode is enabled. Table 45. Conditions for Which the LSB Is Set to 0 (3200 Hz and 1600 Hz Output Data Rates Only) | Justify
(0x31[2]) | FULL_RES
(0x31[3]) | Range (g) | LSB Bit Position | |----------------------|-----------------------|-----------|------------------| | 0 | 0 or 1 | ±0.5 | D0 | | 0 | 1 | ±1 | D0 | | 0 | 1 | ±2 | D0 | | 0 | 1 | ±4 | D0 | | 1 | 0 or 1 | ±0.5 | D6 | | 1 | 1 | ±1 | D5 | | 1 | 1 | ±2 | D4 | | 1 | 1 | ±4 | D3 | The use of 3200 Hz and 1600 Hz output data rates for fixed 10-bit operation in the ± 1 g, ± 2 g, and ± 4 g output ranges provides an LSB that is valid and that changes according to the applied acceleration. Therefore, in these modes of operation, Bit D0 is not always 0 when output data is right justified, and Bit D6 is not always 0 when output data is left justified. # **APPLICATIONS INFORMATION** | DATA | x1 RE | GISTE | R | | | | | | | | | | | DATA_ | 0 REG | ISTER | | |--|-------|-------|----|----|----|----|----|--|----|-----|----|----|----|-------|-------|-------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | 0 | | | FOR THE RIGHT JUSTIFIED DATA: WHEN OPERATING THE ADXL313 WITH AN OUTPUT RATE OF EITHER 3200Hz OR 1600Hz, THE D0 BIT OF THE DATA_X0 REGISTER IS ALWAYS 0 UNDER EITHER OF THE FOLLOWING CONDITIONS: 1) FULL RESOLUTION MODE IS EMABLED (ANY g RANGE), OR | | | | | | | | | | 121 | | | | | | | | Figure 26. Right Justified Data Formatting: 3200 Hz and 1600 Hz Output Data Rate Figure 27. Left Justified Data Formatting: 3200 Hz and 1600 Hz Output Data Rate # **AXES OF ACCELERATION SENSITIVITY** Figure 28. Axes of Acceleration Sensitivity (Corresponding Output Increases When Accelerated Along the Sensitive Axis) Figure 29. Output Response vs. Orientation to Gravity analog.com Rev. D | 28 of 30 # **OUTLINE DIMENSIONS** Figure 30. 32-Lead Lead Frame Chip Scale Package [LFCSP] 5 mm × 5 mm Body, Thick Quad (CP-32-17) Dimensions shown in millimeters Figure 31. Sample Solder Pad Layout (Land Pattern) Updated: September 04, 2022 # **ORDERING GUIDE** | Model ¹ | Temperature Range | Package Description | Packing Quantity | Package
Option | |--------------------|-------------------|--|------------------|-------------------| | ADXL313WACPZ-RL | -40°C to +105°C | 32-Lead LFCSP (5mm x 5mm x 1.55mm w/ EP) | Reel, 4000 | CP-32-17 | | ADXL313WACPZ-RL7 | -40°C to +105°C | 32-Lead LFCSP (5mm x 5mm x 1.55mm w/ EP) | Reel, 1000 | CP-32-17 | ¹ Z = RoHS Compliant Part. # **EVALUATION BOARDS** | Model ¹ | Description | |--------------------|------------------| | EVAL-ADXL313-Z | Evaluation Board | ¹ Z = RoHS Compliant Part. # **AUTOMOTIVE PRODUCTS** The ADXL313W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive analog.com Rev. D | 29 of 30 # **OUTLINE DIMENSIONS** applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive
Reliability reports for these models. I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: **Analog Devices Inc.:** ADXL313WACPZ-RL ADXL313WACPZ-RL7 EVAL-ADXL313-Z EVAL-ADXL313-SDP