2N6420 2N6421 2N6422 2N6423 SILICON

PNP POWER TRANSISTORS

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N6420 series devices are silicon PNP power transistors designed for high speed switching and high voltage amplifier applications.

0.75

1.0

1.4

1.8

200

 $V_{CE(SAT)} \quad I_{C} = 1.0A, \ I_{B} = 125 mA \ (2N6420 \ thru \ 2N6422)$

VCE(SAT)

V_{BE}(SAT)

V_{BE}(SAT)

 h_{FE}

hFE

I_C=750mA, I_B=75mA (2N6423)

I_C=750mA, I_B=75mA (2N6423)

V_{CE}=10V, I_C=500mA (2N6420)

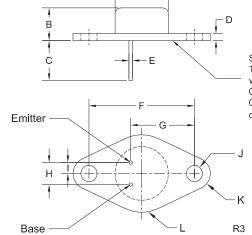
V_{CE}=10V, I_C=100mA

I_C=1.0A, I_B=100mA (2N6420 thru 2N6422)

10-00 CAGE						
MAYIMIIM	RATINGS: (T _C =25°C)	SYMBOL	2N6420	2N6421	2N6422 2N6423	UNITS
	ase Voltage	VCBO	250	375	500	V V
Collector-Emitter Voltage		VCEO	175	250	300	V
Emitter-Bas	•	V _{EBO}	6.0	6.0	6.0	V
Continuous Collector Current		IC	1.0	2.0	2.0	A
Peak Collector Current		I _{CM}		5.0		Α
Continuous	s Base Current	I _B		1.0		Α
Power Diss	sipation	P_{D}		35		W
	and Storage Junction Temperature	T _J , T _{stg}		-65 to +200		°C
Thermal Re	esistance	_⊕ JC		5.0		°C/W
SYMBOL	AL CHARACTERISTICS: (T _C =25°C TEST CONDITIONS	uniess otherwis Min	se noted)	MAX		UNITS
ICEV	V _{CE} =225V, V _{BE} =1.5V (2N6420)	101114		1.0		mA
ICEV	V _{CE} =340V, V _{BE} =1.5V (2N6421)			1.0		mA
ICEV	V _{CF} =450V, V _{BF} =1.5V (2N6422)			1.0		mA
ICEV	V _{CF} =450V, V _{BF} =1.5V (2N6423)			2.0		mA
ICEV	V _{CF} =225V, V _{BF} =1.5V, T _C =150°C (2N6420)			3.0		mA
ICEV	V _{CF} =300V, V _{BF} =1.5V, T _C =150°C (2N6421)			3.0		mA
ICEV	V _{CE} =300V, V _{BE} =1.5V, T _C =150°C (2N6422) 3.0			mA		
ICEV	V _{CE} =300V, V _{BE} =1.5V, T _C =150°C (2N6423) 5.0			mA		
ICEO	V _{CE} =150V (2N6420)			10		mA
ICEO	V _{CE} =150V (2N6421, 2N6422, 2N64	423)		5.0		mA
I _{EBO}	V _{EB} =6.0V (2N6420)			5.0		mA
I _{EBO}	V _{EB} =6.0V (2N6421, 2N6422, 2N64	23)		0.5		mA
BVCEO	I _C =50mA, (2N6420)	175				V
BVCEO	I _C =50mA, (2N6421)	250				V
BVCEO	I _C =50mA, (2N6422, 2N6423)	300				V

40

40


R1 (2-September 2014)

2N6420 2N6421 2N6422 2N6423 SILICON PNP POWER TRANSISTORS

ELECTRICA	AL CHARACTERISTICS - Continued: (T $_{ m C}$ =25 $^{\circ}$ C $_{ m C}$	nless oth	erwise noted)	
SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
h_{FE}	V _{CE} =2.0V, I _C =750mA (2N6423)	10	100	
hFE	V _{CE} =2.0V, I _C =1.0A (2N6421, 2N6422)	8.0	80	
hFE	V _{CE} =10V, I _C =1.0A (2N6420)	10		
h _{fe}	V_{CE} =30V, I_{C} =100mA, f=1.0kHz	25	350	
f _T	V _{CE} =10V, I _C =200mA, f=5.0MHz (2N6420,21,22)	10		MHz
fT	V _{CE} =10V, I _C =200mA, f=5.0MHz (2N6423)	15		MHz
C _{ob}	V _{CB} =10V, I _E =0, f=1.0MHz		120	pF
t _r	V _{CC} =200V, I _C =1.0A, I _{B1} =100mA,			
	R _L =200Ω (2N6420, 2N6421, 2N6422)		3.0	μs
t _r	V _{CC} =200V, I _C =750mA, I _{B1} =75mA,			
	R _L =267Ω (2N6423)		5.0	μs
t _s	V _{CC} =200V, I _C =1.0A, I _{B1} =I _{B2} =100mA			
	(2N6420, 2N6421, 2N6422)		4.0	μs
t _s	V_{CC} =200V, I_C =750mA, I_{B1} = I_{B2} =75mA (2N6423)		6.0	μs
t _f	V _{CC} =200V, I _C =1.0A, I _{B1} =I _{B2} =100mA			
	(2N6420, 2N6421, 2N6422)		3.0	μs
t _f	V _{CC} =200V, I _C =750mA, I _{B1} =I _{B2} =75mA (2N6423)		3.0	μs
I _{S/b}	V _{CE} =100V	150		mA

TO-66 CASE - MECHANICAL OUTLINE

Seating Plane:
The seating plane must be within 0.001" concave to 0.004" convex within 0.600" diameter from the center of the device.

DIMENSIONS					
	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
A (DIA)	0.470	0.500	11.94	12.70	
В	0.250	0.340	6.35	8.64	
С	0.360	-	9.14	-	
D	0.050	0.075	1.27	1.91	
E (DIA)	0.028	0.034	0.71	0.86	
F	0.956	0.964	24.28	24.48	
G	0.570	0.590	14.48	14.99	
Н	0.190	0.210	4.83	5.33	
I	0.093	0.107	2.36	2.72	
J (DIA)	0.142	0.152	3.61	3.86	
K (RAD)	0.141		3.58		
L (RAD)	0.345		8.76		
TO-66 (REV:R3)					

MARKING: FULL PART NUMBER

R1 (2-September 2014)

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- · Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)

Product End of Life Notification

PDN ID:	PDN01134
Notification Date:	8/27/19
Last Buy Date:	
Last Shipment Date	Stock Only

Please be advised that Central Semiconductor must immediately discontinue the product(s) listed in the attached PDN notice. We are unable to accept any further orders for these products <u>unless</u> we have available inventory on hand.

You may have purchased one or more of the products listed. Please do not hesitate to contact your local Central Semiconductor sales representative with any questions or needs you may have. Central regrets any inconvenience this may cause.

Sincerely,

Central Semiconductor Corp.

DISCLAIMER: This End of Life (EOL) notification is in accordance with JEDEC standard JESD48 - Product Discontinuance. Central Semiconductor Corp. will make every effort to offer life-time buy (LTB) opportunities and/or offer replacement devices to existing customers for discontinued devices, however, one or both may not be possible for all devices. Please contact your local Central Semiconductor sales representative for LTB opportunities/additional information.

CCC785 REV 002

Product End of Life Notification

PDN ID:	PDN01134
Notification Date:	8/27/19
Last Buy Date:	
Last Shipment Date	Stock Only

Summary: The 2N6422 power transistor is discontinued and now classified as End of Life (EOL).

Although Central Semiconductor Corp. makes every effort to continue to produce devices that have been proclaimed EOL (End of Life) by other manufacturers, it is an accepted industry practice to discontinue certain devices when customer demand falls below a minimum level of sustainability. Accordingly, the following product(s) have been transitioned to End of Life status as part of Central's ongoing Product Management Process. Any replacement products are noted below. The effective date for placing last purchase orders will be six (6) months from the date of this notice and twelve (12) months from the notice date for final shipments, and minimum order quantities may apply. The last purchase and shipment dates may be extended if inventory is available.

Central Part Number	Replacement
2N6422	N/A, Stock Only

Central would be happy to assist you by providing additional information or technical data to help locate an alternate source if we have no replacement available. Please email your requests to engineering@centralsemi.com.

DISCLAIMER: This End of Life (EOL) notification is in accordance with JEDEC standard JESD48 - Product Discontinuance. Central Semiconductor Corp. will make every effort to offer life-time buy (LTB) opportunities and/or offer replacement devices to existing customers for discontinued devices, however, one or both may not be possible for all devices. Please contact your local Central Semiconductor sales representative for LTB opportunities/additional information.

CCC785 REV 002

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Central Semiconductor:

2N6420 PBFREE 2N6422 PBFREE 2N6420 2N6422 2N6422 TIN/LEAD