

ZM1-Development Board User Manual

For more details, visit: www.zervnth.com

This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized

Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision.

Table of contents

Overview	2
General Characteristics	2
Modular Expansion System	3
Screw Description	4
Technical Specifications	4
Components' Guide	5
Pin Map	6
Pin-Description	7
zBUS Pin Description	9
Getting Started	10
Software	10
Zerynth SDK	10
Declaration of Conformity	11
Warnings	11
Instructions for safe use	12

Overview

The ZM1 Development board is an industrial oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications.

The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of upto 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication.

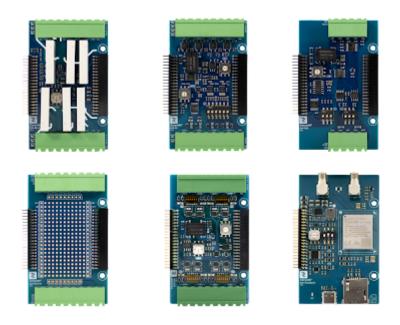
The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system.

The DR features I/O connectors (the ZRLIS) that allow connection in a cascade of different

The DB features I/O connectors (the zBUS) that allow connection in a cascade of different add-on modules to create specific industrial applications that fit into a DIN-RAIL case.

General Characteristics

- ZM1 Module
 - o 32-bit dual Core MCU based on the ESP32-WROOM-32SE.
 - Clock frequency upto 240 Mhz.
 - o Embedded 16 MB SPI Flash memory
 - o Integrates the ATECC608A crypto element allowing ultra-secure communication.
 - WiFi (Client and AP mode supported) and Bluetooth® Low-Energy Support
- 9 to 36V input Power Supply.
- MicroSD card slot.
- Ethernet support.
- Reset button and user configurable button.
- JTAG support.
- 3 RGB status LEDs.
- USB-C (power and programming).
- Python / C enabled development with Zerynth OS.


Modular Expansion System

Zerynth Development boards offer a game-changing way of connecting and adding functionalities to your application in a simple and easy way.

The development board offers a modular expansion system that adds expansion boards through the connectors on the board (zBUS).

Expansion boards vary in features and functionality. Currently, Zerynth offers:

- **EXP-AIN:** Expansion board with 8 Industrial analog input channels
- **EXP-CONNECT:** GSM-NB-IoT and GPS enabled expansion module.
- **EXP-IO:** Industrial input/output board with 4 solid-state relays, 2 analog channels (4-20mA/0-10V/NTC/current clamp) channels, 2 opto-isolated digital inputs
- **EXP-RELAY:** Expansion board with 6 Electromechanical power relays.
- **EXP-SER:** Serial Communication board with: CAN, RS232 and RS485 interfaces.
- **EXP-PROTO:** Prototyping board for connecting and testing different types of sensors and devices.

Note: The ZM1-DB supports up to 3 attached expansion boards.

Screw Description

Connector J1		
Screw Number	Symbol	Description
1	Power+	External Power Supply positive pin
2	Power-	External Power Supply negative pin

Technical Specifications

Power Supply	
Voltage	9-36 V DC
Power Consumption	Typical: 1 W; Maximum: 5 W.

Inputs / Outputs	
Microcontroller I/O Pin Voltage	Max supported voltage: 3.3 V

Environmental Conditions	
Temperature	-40 to +85 °C
Humidity	Max 80% (not condensing)
Storage Temperature	-40 to +85 °C
Degree Protection	< IP40

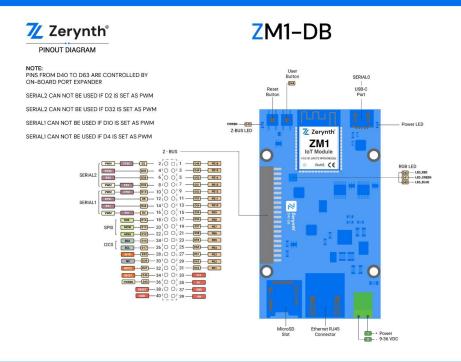
Connectors	
Ethernet	RJ45 Connector
Programming	USB-C Connector
Micro SD	Micro SD Slot

Operating Frequency

Categories	Items	Specifications
	RF Certification	FCC/CE-RED
Certification	Green Certification	RoHS/REACH
Test	Reliability	HTOL/HTSL/uHAST/TCT/ESD
	Protocols	802.11 b/g/n (802.11n up to 150 Mbps)
Wi-Fi		A-MPDU and A-MSDU aggregation and 0.4 μs guard interval support
	Frequency Range	2.4 ~ 2.5 GHz
	Protocols	Bluetooth v4.2 BR/EDR
Bluetooth		NZIF receiver with –97 dBm sensitivity
	Radio	NZIF receiver with –97 dBm sensitivity
		AFH

Components' Guide

Ethernet: the board uses the LAN8710 as a physical layer transceiver, The Ethernet components can be reset through the NRST pin as an API in your application code.


Power Supply: The development board can be powered through the USB type-C connection, 9-36V Power Supply connector P1.

DC power supply has priority over the USB power supply, but the power circuit automatically detects and uses the available power source.

Note: The ZM1-DB uses the CP2102 chip for USB connection.

Pin Map

LEDs: The ZM1-development board offers:

- Power-on LED.
- zBUS Power-on: Power Supply of the connected expansion board.
- 3 RGB LEDs Configurable through application code.

Push-Buttons: The development board offers an *RST* BTN for resetting the MCU and USER *BTN* configurable through application code.

Pin-Description

Pin-Name	Direction	Function	Connected to
D0	IN	воот	Bootstrap pin on ZM1 and the EMAC_CLK
D1	OUT	TX0 (SERIAL0)	USB Serial port
D2	IN	Clear To Send SERIAL2 (CTS2)	Serial2 Instance
D3	IN	RX0 (SERIAL0)	USB Serial port
D4	OUT	TX1 (SERIAL1)	Serial1 Instance.
D5	OUT	Ready To Send SERIAL1 (RTS1)	Serial1 Instance.
D10	IN	Clear To Send SERIAL1 (CTS1)	Serial1 Instance.
D12	IN	MISO0 (SPI0)	SPI0 High Speed
D13	OUT	MOSI0 (SPI0)	SPI0 High Speed
D14	OUT	SCK0 (SPI0)	SPI0 High Speed
D15	OUT	CS0	CS for MicroSD card
D16	IN/OUT	SDA0 (I2C0)	I2C0 instance
D17	OUT	SCL0 (i2C0)	I2C0 instance
D18	IN/OUT	EMAC MDIO	EMAC MDIO of the LAN8710
D19	OUT	EMAC TXD0	EMAC TXD0 of the LAN8710
D21	OUT	EMAC TXEN	EMAC TXEN of the LAN8710
D22	OUT	EMAC TXD1	EMAC TXD1 of the LAN8710
D23	OUT	EMAC MDC	EMAC MDC of the LAN8710
D25	IN	EMAC RXD0	EMAC RXD0 of the LAN8710
D26	IN	EMAC RXD1	EMAC RXD1 of the LAN8710
D27	OUT	EMAC CSRDV	EMAC CSRDV of the LAN8710

D32	OUT	TX2	SERIAL2 Instance.
D33	OUT	Ready To Send SERIAL2 (RTS2)	SERIAL2 Instance.
D34	IN	RX1 (SERIAL1)	SERIAl1 instance.
D35	IN	INTR	Interrupt pin Exposed on the zBUS (dedicated native interrupt for Expansion boards)
D36	IN	RX2 (SERIAL2)	SERIAL2 Instance.
D39	IN	INT	Interrupt pin on the port expander NXP PCAL6524

NOTE: PCAL6524 primary Port Expander interrupt pin connected to **ZM1** pin D39 driven with I2C at address 0x22.

NOTE: Crypto Element Microchip ATECC608A driven in I2C at the address 0x35 with our libraries with 7 bit address or 0xC0 with the 8bit one

zBUS Pin Description

PIN-Name	Description
EVIN	External power supply voltage (9-36V)
RESET	Reset pin, Active low.
PWREN	enable/disable the power in the zBUS
5V	Regulated 5V power supply
INTE1	Configurarable interrupt for DB-ZM1 on-board port expander.
3V3	Regulated 3.3V power supply.
INTE2	Configurarable interrupt for DB-ZM1 on-board port expander.
PE1-16	Digital I/O pins connected to ZM1 on-board Port Expander
INTB	Not Connected for DB-ZM1
INTR	Native Interrupt: user configurable
SCL	I2C Serial Clock
SDA	I2C Serial Data
MISO	SPI Master Input Slave Output
MOSI	SPI Master Output Slave Input
SCK	SPI Serial Clock
TX1	UART/USART 1 Transmit Data
RX1	UART/USART 1 Receive Data
RTS1	UART/USART 1 Request To Send
CTS1	UART/USART 1 Clear To Send
TX2	UART/USART 2 Transmit Data
RX2	UART/USART 2 Receive Datal
RTS2	UART/USART 2 Request To Send
CTS2	UART/USART 2 Clear To Send

Getting Started

- 1. Follow the step-by-step guide for downloading and installing ZSDK https://docsv3.zerynth.com/latest/gettingstarted/
- 2. Please check the getting started guide for the ZM1-DB https://docsv3.zervnth.com/latest/gettingstarted/ZM1-DB/

Software

Zerynth SDK provides software libraries for each board, alongside API documentation and examples. Please check the Hardware section for more information.

https://docs.zerynth.com/latest/hardware/

Zerynth SDK

Zerynth platform is designed to simplify and accelerate the development of IoT applications. Zerynth offers tools for developers, system integrators, and businesses to enable IoT for their products, rapidly in a secure and connected way.

Zerynth SDK is the official development framework for Zerynth hardware, It includes a compiler, device drivers and libraries drivers, In addition to simple tutorials, example codes, and application examples.

Zerynth SDK and all the required libraries can be installed on Windows, Linux and Mac using the Zerynth Installer (https://www.zerynth.com/zsdk).

Declaration of Conformity

IMPORTANT: KEEP THESE INFORMATION FOR FUTURE REFERENCE FOR FULL SET UP AND INSTALLATION INSTRUCTIONS PLEASE VISIT <u>docs.zerynth.com</u>

Warnings

- All external power supplies used with Zerynth boards must comply with the relevant regulations and standards applicable in the country of use and must provide a voltage between 9 and 36 VDC.
- Hereby, ZERYNTH srl declares that the radio equipment type Zerynth Development boards are in compliance with Directive 2014/53/EU (RED). The full text of the EU declaration of conformity is available at the following internet address: https://www.zerynth.com/download/20246/
- The manufacturer cannot guarantee compliance with the RED directive if the end user uses custom circuits other than those supplied by Zerynth (used in conformity tests).
- All expansion boards that require CE marking have been tested and meet the essential requirements set by the Directives: 2014/30/EU (EMC), 2014/35/EU (LVD), 2011/65/EU (RoHS). The declaration of conformity (DoC) can be downloaded from the website https://www.zerynth.com/download/20246/
- All Zerynth boards have undergone compliance testing for conducted and radiated emissions meeting the requirements of the following standards: FCC Part 15 B and IC ICES-003.
- Any device or component connected to one of the expansion connectors must comply with the electrical characteristics defined in the specifications described in the complete manual to ensure that the performance and safety requirements are met.
- Each cable used to connect other devices or components to the Zerynth boards must be less than 300 cm long and must offer adequate insulation and operation so that the appropriate performance and safety requirements are met.

Instructions for safe use

- Do not expose this product to water or moisture and do not place it on a conductive surface while it is operating.
- Do not expose this product to excessive heat sources which could cause it to operate outside the permitted temperature range defined in the specifications (-40, +85 ° C).
- Be careful when handling the product to avoid mechanical or electrical damage to the printed circuit board and connectors.
- If a board looks damaged, do not use it.
- Do not touch the printed circuit board when it is powered and never operate on live electrical parts.
- The printed circuit board must not come into contact with conductive objects when it is powered.
- Discharge static electricity from your body and touch only the edges of the board to minimize the risk of damage from electrostatic discharge.

EN - Waste Electrical and Electronic Equipment (WEEE) Symbol

The use of the WEEE symbol indicates that this product/board may not be treated as household waste. By ensuring this product/board is disposed of correctly, you will help protect the environment. For more detailed information about recycling of this product/board, please contact your local authority, your household waste disposal service provider or the shop where you purchased it.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Zerynth:

DEV-M1-01-F016