

# 0RQB-D0W12L

## Isolated DC-DC Converter

The 0RQB-D0W12L is an isolated DC-DC converter that provides up to 200 W of output power from a wide input voltage range (72 V, 96 V and 110 V typical).

The unit is designed to be highly efficient. Standard feature include remote on/off, input under-voltage lockout, over current and short circuit protection and overvoltage protection. Conformal coated PCB is used for environmental ruggedness.



### Key Features & Benefits

- 72 / 96 / 110 VDC Input
- 12 VDC @ 16.7 A Output
- 1/4th Brick Converter
- Isolated
- Fixed Frequency
- High Efficiency
- Input Under / Over Voltage Lockout
- OCP/SCP
- Output Over-Voltage Protection
- Over Temperature Protection
- Approved to UL/CSA60950-1, 2nd +A2 version (Pending)
- Class 2, Category 2, Isolated DC/DC Converter (refer to IPC-9592B)

### Applications

- Industrial
- Railways
- Telecommunications

## 1. MODEL SELECTION

| MODEL NUMBER | OUTPUT VOLTAGE | INPUT VOLTAGE  | MAX. OUTPUT CURRENT | MAX. OUTPUT POWER | TYPICAL EFFICIENCY |
|--------------|----------------|----------------|---------------------|-------------------|--------------------|
| 0RQB-D0W12L  | 12 VDC         | 72/96/110V VDC | 16.7 A              | 200 W             | 93%                |

**NOTE:** Add "G" suffix at the end of the model number to indicate Tray Packaging.

### PART NUMBER EXPLANATION

| 0                  | R           | QB                    | -            | D0          | W              | 12                      | L | x |                  |
|--------------------|-------------|-----------------------|--------------|-------------|----------------|-------------------------|---|---|------------------|
| Mounting Type      | RoHS Status | Series Name           | Output Power | Input Range | Output Voltage | Active Logic            |   |   | Package Type     |
| Through hole mount | RoHS        | DOSA<br>Quarter Brick | 200 W        | 72/96/110V  | 12 V           | Active low, without HSK |   |   | G – Tray package |

## 2. ABSOLUTE MAXIMUM RATINGS

| PARAMETER             | DESCRIPTION                                                    | MIN  | TYP | MAX  | UNITS  |
|-----------------------|----------------------------------------------------------------|------|-----|------|--------|
| Input Voltage         | Continuous non-operating                                       | -0.5 | -   | 164  | V      |
| Remote On/Off         |                                                                | -0.3 | -   | 15   | V      |
| Current Sink          |                                                                | 0    | -   | 10   | mA     |
| Isolation Voltage     | Input to output                                                | -    | -   | 2250 | V      |
| Operating Temperature | Temperature measured at the center of the baseplate, full load | -40  | -   | 95   | °C     |
| Thermal Resistance    |                                                                | -    | 0.3 | -    | °C / W |
| Storage Temperature   |                                                                | -55  | -   | 125  | °C     |
| Altitude              |                                                                | -    | -   | 2000 | m      |

**NOTE:** Ratings used beyond the maximum ratings may cause a reliability degradation of the converter or may permanently damage the device.

## 3. INPUT SPECIFICATIONS

All specifications are typical at 25°C unless otherwise stated.

| PARAMETER                              | DESCRIPTION                                                                                                | MIN       | TYP    | MAX       | UNIT |
|----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|--------|-----------|------|
| Operating Input Voltage 1              | Fully functioning for long term operation.                                                                 | 50        | -      | 136       | V    |
| Operating Input Voltage 2              | Fully functioning for 100 ms operation.<br>Full function is not guaranteed but undamaged for 1s operation. | 43<br>136 | -<br>2 | 50<br>156 | V    |
| Input Current (full load)              |                                                                                                            | -         | -      | 5.7       | A    |
| Input Current (no load)                |                                                                                                            | -         | 50     | -         | mA   |
| Remoted Off Input Current              |                                                                                                            | -         | 2      | 5         | mA   |
| Input Reflected Ripple Current (rms)   |                                                                                                            | -         | 20     | -         | mA   |
| Input Reflected Ripple Current (pk-pk) |                                                                                                            | -         | 50     | -         | mA   |
| Under-voltage Turn on Threshold        | Turn on Threshold                                                                                          | 46        | 47     | 49        | V    |
| Under-voltage Turn off Threshold       | Turn off Threshold, non-latching                                                                           | 40        | 41     | 42.5      | V    |
| Over-voltage Shutdown Threshold        | Auto-recovery and non-latching.                                                                            | 161       | 163    | 165       | V    |
| Over-voltage Recovery Threshold        |                                                                                                            | 154       | 155    | 156       | V    |

#### 4. OUTPUT SPECIFICATIONS

All specifications are typical at nominal input, full load at 25°C unless otherwise stated.

| PARAMETER                   | DESCRIPTION                                                                            | MIN   | TYP | MAX   | UNIT |
|-----------------------------|----------------------------------------------------------------------------------------|-------|-----|-------|------|
| Output Voltage Set Point    | Test condition of the output setpoint:<br>Vin = 110 V, Io = 100% load at 25°C ambient. | 11.76 | 12  | 12.24 | V    |
| Load Regulation             |                                                                                        | -     | -   | ±30   | mV   |
| Line Regulation             |                                                                                        | -     | -   | ±30   | mV   |
| Regulation Over Temperature |                                                                                        | -     | ±60 | ±200  | mV   |
| Ripple and Noise (pk-pk)    | 40 KHz – 100 MHz BW, with 1 µF ceramic capacitor and                                   | -     | -   | 250   | mV   |
| Ripple and Noise (rms)      | 220 µF bulk electrolytic at output.                                                    | -     | -   | 50    | mV   |
| Output Current Range        |                                                                                        | 0     | -   | 16.7  | A    |
| Output DC Current Limit     | Enter a hiccup mode, non-latching.                                                     | 18    | 20  | 22    | A    |
| Rise time                   | Vin = 110 V, Io = 16.7 A, with 1µF ceramic capacitor and                               | -     | 200 | -     | ms   |
| Start-up time               | 220 µF bulk electrolytic at output.                                                    | -     | 300 | 500   | ms   |
| Overshoot at Turn on        |                                                                                        | -     | 0   | 3     | %    |
| Undershoot at Turn off      |                                                                                        | -     | 0   | 3     | %    |
| Output Capacitance          |                                                                                        | 220   | -   | 5000  | uF   |
| <b>Transient Response</b>   |                                                                                        |       |     |       |      |
| 50% load to 75% Load        |                                                                                        | -     | -   | 600   | mV   |
| Settling Time               | di/dt = 0.1A/us, with 1µF ceramic capacitor and 220 µF bulk electrolytic at output.    | -     | -   | 2     | ms   |
| 75% load to 50% Load        |                                                                                        | -     | -   | 600   | mV   |
| Settling Time               |                                                                                        | -     | -   | 2     | ms   |

#### 5. GENERAL SPECIFICATIONS

| PARAMETER                        | DESCRIPTION                                                    | MIN                | TYP  | MAX               | UNIT |
|----------------------------------|----------------------------------------------------------------|--------------------|------|-------------------|------|
| Efficiency                       | Io=60% Irate – 100% Irate, TA = 25°C                           | 92                 | 93   | -                 | %    |
|                                  | Io=40% Irate - 60% Irate, TA = 25°C                            | 90                 | 92   | -                 | %    |
| Switching Frequency              |                                                                | -                  | 250  | -                 | kHz  |
| Output Voltage Trim Range        |                                                                | 10.8               | -    | 13.2              | V    |
| Over Temperature Protection      | Temperature measured at the center of the baseplate, full load | -                  | 110  | -                 | °C   |
| Output Over Voltage Protection   | Enter a latching, non-hiccup mode                              | -                  | -    | 15                | V    |
| Weight                           |                                                                | -                  | 69   | -                 | g    |
| FIT                              | Calculated Per Bell Core SR-332 (Vin = 110 V,                  | -                  | TBD  | -                 | -    |
| MTBF                             | Vo = 12 V, Io = 13 A, TA = 25°C, FIT = 10 <sup>9</sup> /MTBF)  | -                  | TBD  | -                 | Mhrs |
| Dimensions (L x W x H)           |                                                                | 2.45 x 1.45 x 0.59 |      | 62.24 x 36.84 x15 |      |
| <b>Isolation Characteristics</b> |                                                                |                    |      |                   |      |
| Input to Output                  |                                                                | -                  | -    | 2250              | VDC  |
| Input to Heatsink                |                                                                | -                  | -    | 2250              | VDC  |
| Output to Heatsink               |                                                                | -                  | -    | 2250              | VDC  |
| Isolation Resistance             |                                                                | 10M                | -    | -                 | Ohm  |
| Isolation Capacitance            |                                                                | -                  | 2200 | -                 | pF   |

## 6. EFFICIENCY DATA

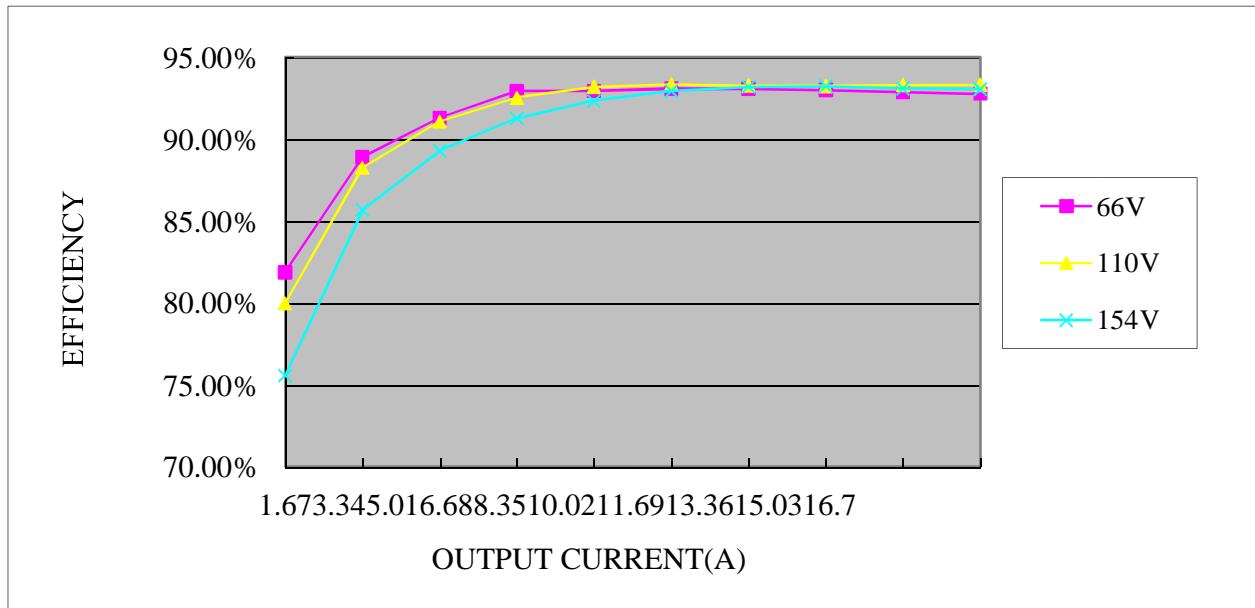



Figure 1. Efficiency

## 7. RIPPLE AND NOISE

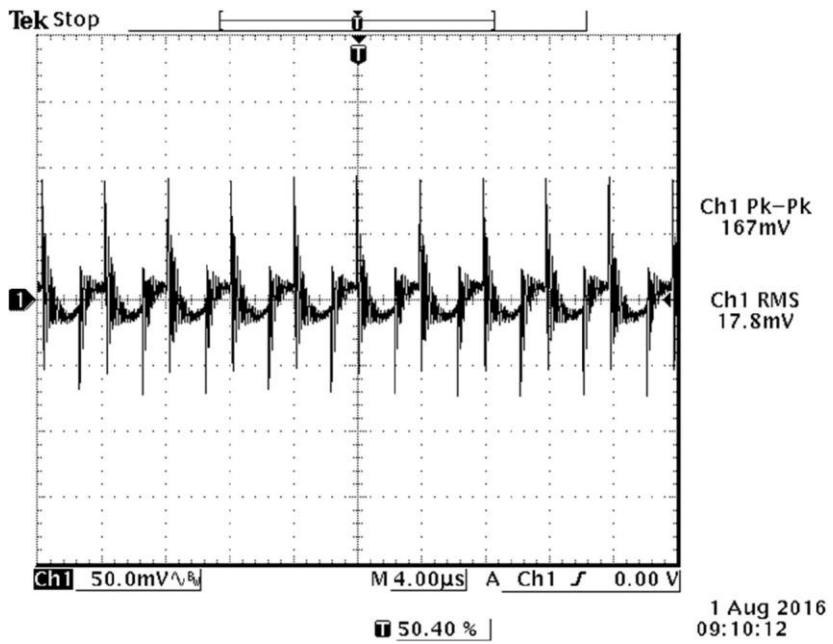



Figure 2. Ripple & noise 110 VDC input, 12 VDC/16.7 A output and  $T_a = 25^\circ C$ , and with a 1uF ceramic cap and 220uF electrolytic cap at output.

## 8. THERMAL DERATING CURVES

1. In order to make it convenient for safety and test engineer, each curve has 3 air velocity at most. It is better that the middle one is at the centre of minimum and maximum. For example, 0-200-400, 0-100-200, 100-200-300
2. If the minimum air velocity is 0 LFM or 50 LFM, do not mark on the curve, just record as "Natural Convection" Maximum junction temperature of semiconductors derated to 115°C. TA is the temperature on the large heatsink rib.

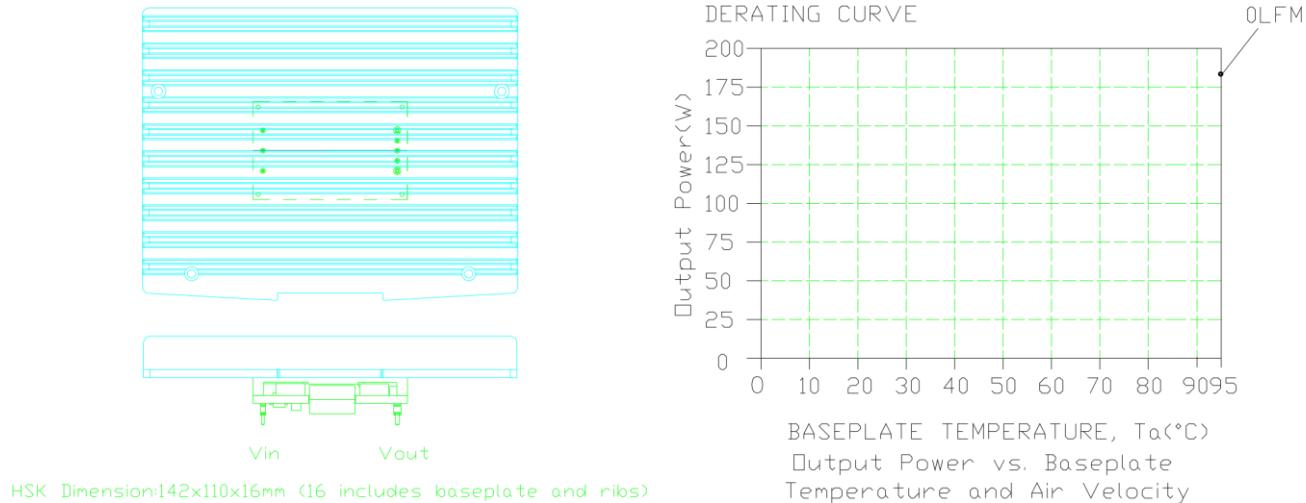



Figure 3. Thermal Derating Curves

## 9. TRANSIENT RESPONSE

Transient Response:  $di/dt = 0.1A/\mu s$ , 1uF ceramic cap and 220 uF electrolytic cap at output.

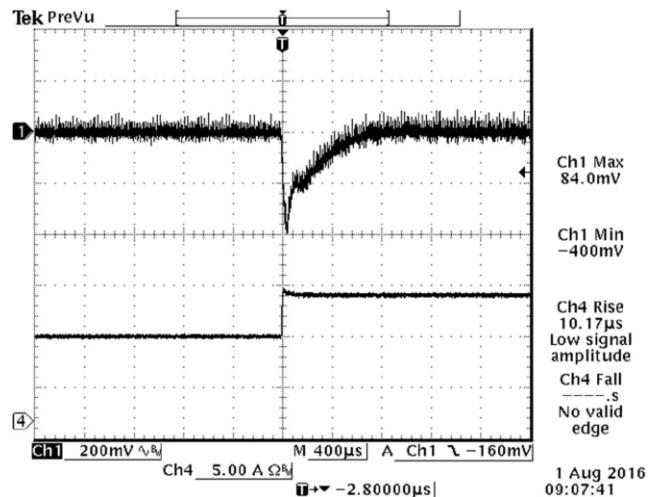



Figure 4.  $V_{out} = 12V$  50%-75% Load Transients at  $V_{in}=110V$ ,  $T_a=25^{\circ}C$

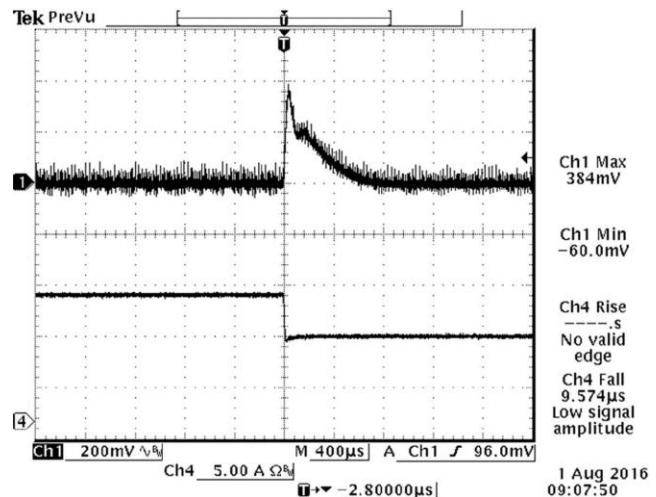
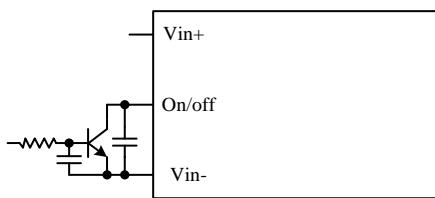
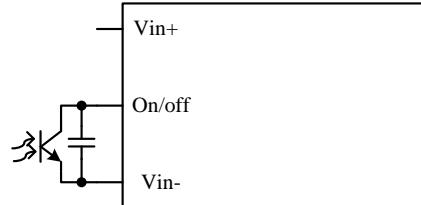
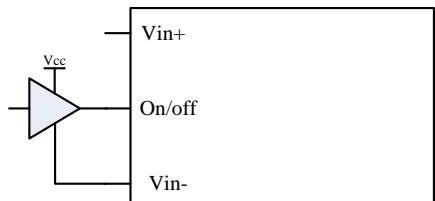



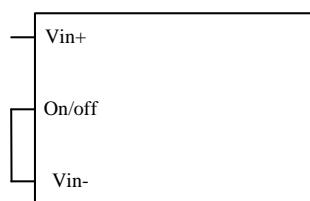

Figure 5.  $V_{out} = 12V$  75%-50% Load Transients at  $V_{in}=110V$ ,  $T_a=25^{\circ}C$


## 10. REMOTE ON/OFF

| PARAMETER              | DESCRIPTION                                   | MIN  | TYP | MAX | UNIT |
|------------------------|-----------------------------------------------|------|-----|-----|------|
| Signal Low (Unit On)   | Active Low                                    | -0.3 | -   | 0.8 | V    |
| Signal High (Unit Off) | Remote On/Off pin is open, the module is off. | 2.4  | -   | 18  | V    |
| Current Sink           |                                               | 0    | -   | 1   | mA   |


### Recommended remote on/off circuit for active low



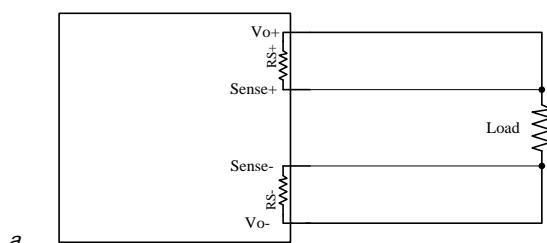

Control with open collector/drain circuit



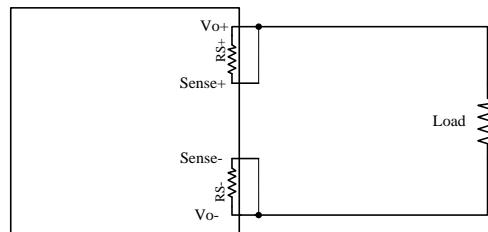
Control with photocoupler circuit



Control with logic circuit

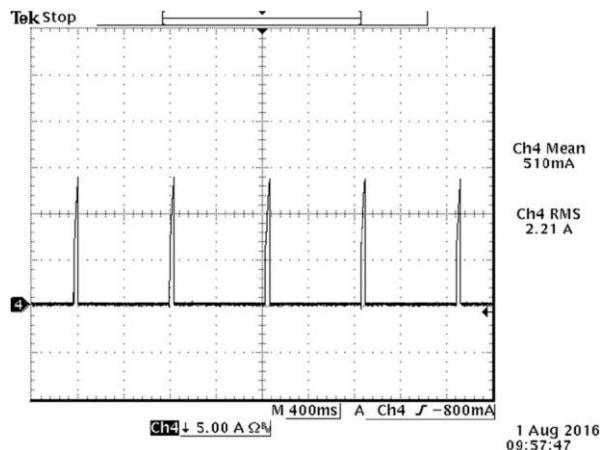



Permanently on


## 11. REMOTE SENSE

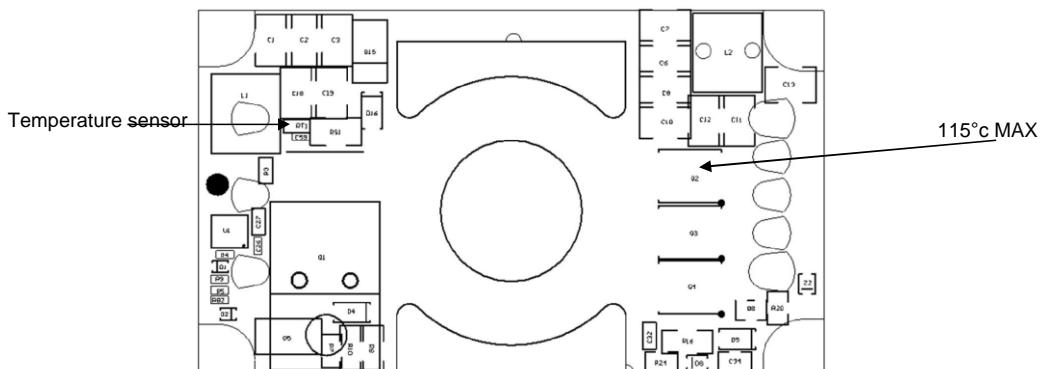
This module has remote sense compensation feature. It can minimizes the effects of resistance between module's output and load in system layout and facilitates accurate voltage regulation at load terminals or other selected point.

1. The remote sense lines carries very little current and hence do not require a large cross-sectional area.
2. This module compensates for a maximum drop of 4% of the nominal output voltage.
3. If the unit is already trimmed up, the available remote sense compensation range should be correspondingly reduced. The total voltage increased by trim and remote sense should not exceed 4% of the nominal output voltage.
4. When using remote sense compensation, all the resistance, parasitic inductance and capacitance of the system are incorporated within the feedback loop of this module. This can make an effect on the module's compensation, affecting the stability and din.
5. Recommend the connection of remote sense compensation as below figure. There are a resistor RS+ (100 ohm) from Vo+ to Sense+ and a resistor RS- (100 ohm) from Vo- to Sense- inside of this module.




6. If not using remote sense compensation, please connect sense directly to output at module's pin, that is, connect sense+ to Vo+ and sense- to Vo- at module's pin, the shorter the better. see below figure.




## 12. OCP

To provide protection in a fault output overload condition, the module is equipped with internal current-limiting circuitry and can endure current limiting for a few mili-seconds. If the overcurrent condition persists beyond a few milliseconds, the module will shut down into hiccup mode and restart once every 800mS. The module operates normally when the output current goes into specified range. The typical average output current is 0.51A during hiccup.



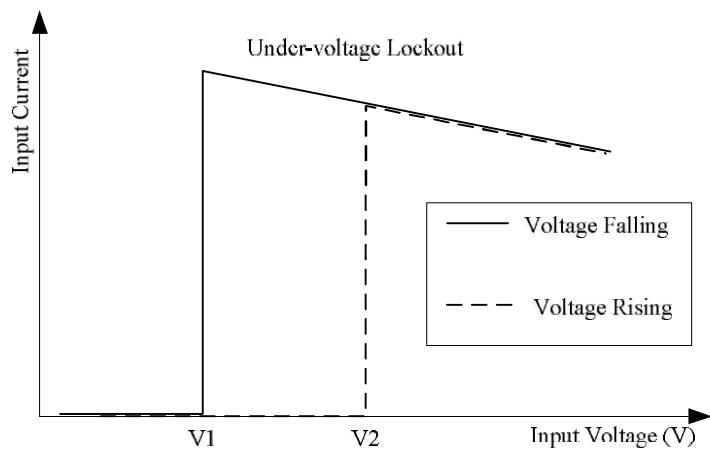
## 13. OTP

To provide protection in a fault output overload condition, the module is equipped with internal current-limiting circuitry and can endure current limiting for a few mili-seconds. If the overcurrent condition persists beyond a few milliseconds, the module will shut down into hiccup mode and restart once every 800mS. The module operates normally when the output current goes into specified range. The typical average output current is 0.51A during hiccup.



### Top View




# POWER SOLUTIONS & PROTECTION

**Asia-Pacific**

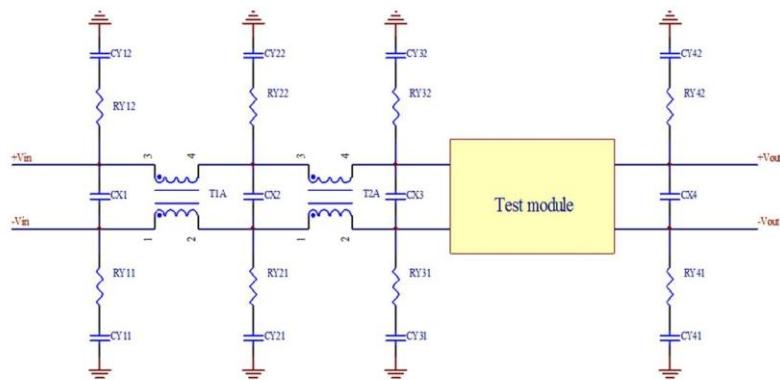
**Europe, Middle East**  
+353 61 225 977

North America  
+1 408 785 5200

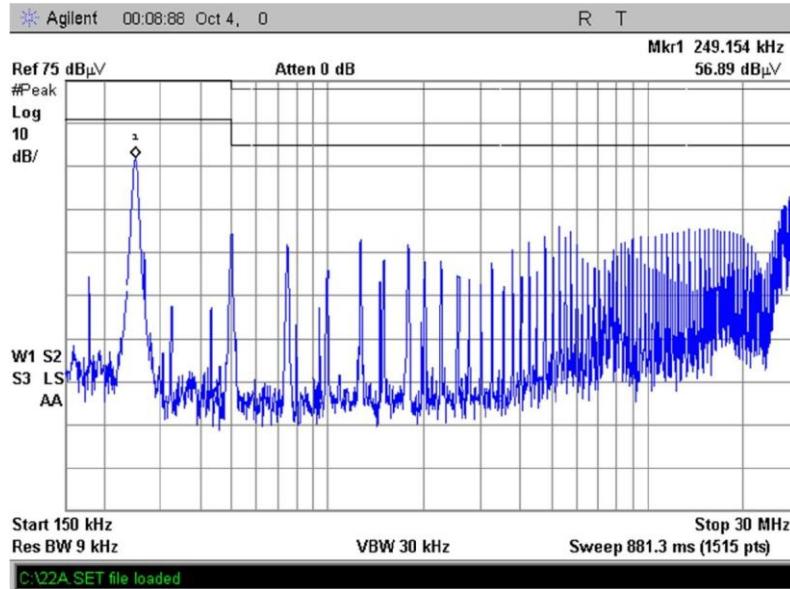
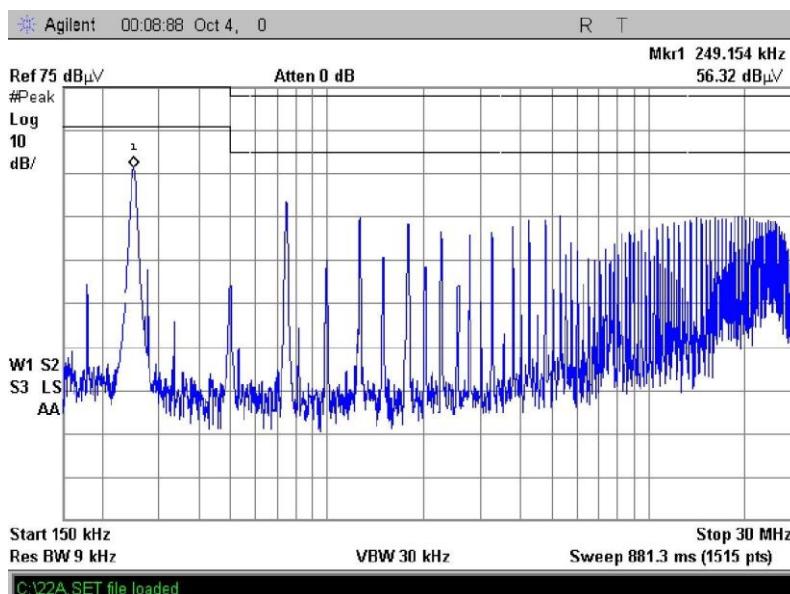
## 14. INPUT UNDER-VOLTAGE LOCKOUT



$V_1=38V$   
 $V_2=40V$


## 15. SAFETY & EMC

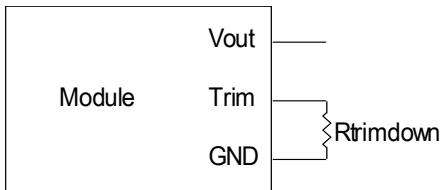
### Safety:



1. UL Certification UL60950-1
2. TUV Certification EN60950-1

### EMC:

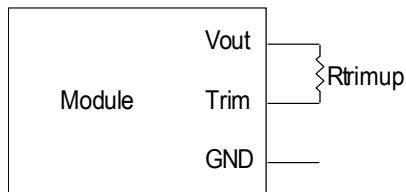
Setup:




| T1A | CX1      | RY11 | RY12 | CY11  | CY12  |
|-----|----------|------|------|-------|-------|
|     | 330uF AL |      |      | -     |       |
| T2A | CX2      | RY21 | RY22 | CY21  | CY22  |
| 1mH | 1uF      | 0R   | 0R   | 2.2uF | 2.2uF |
|     | CX3      | RY31 | RY32 | CY31  | CY32  |
|     | 1uF      |      |      | -     |       |
|     | CX4      | RY41 | RY42 | CY41  | CY42  |
|     | 220uF AL |      |      | -     |       |

**Positive:****Negative:**

## 16. TRIM


### 0RQB-D0W12L Trim Resistor Calculate

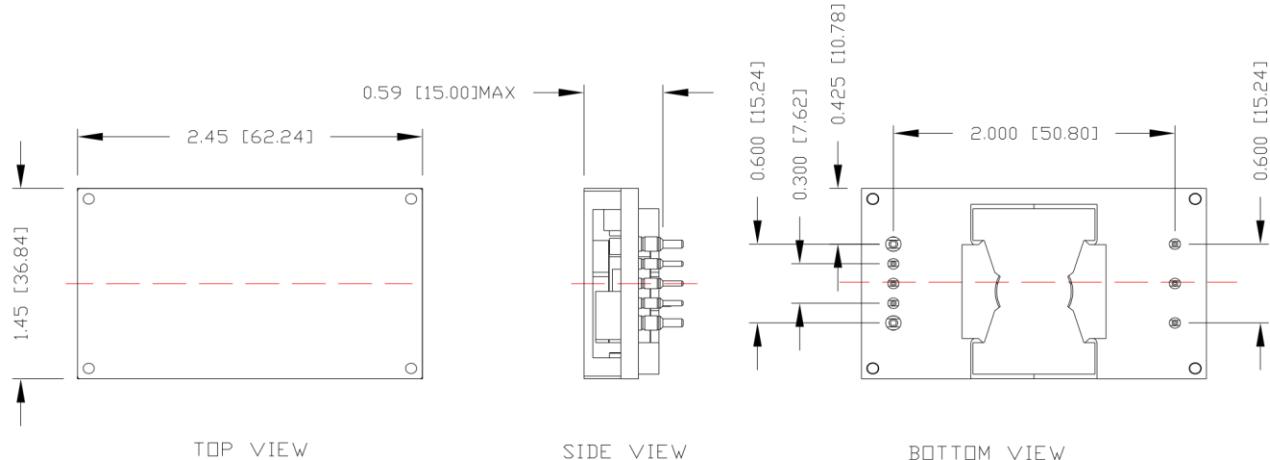
Trim down test circuit

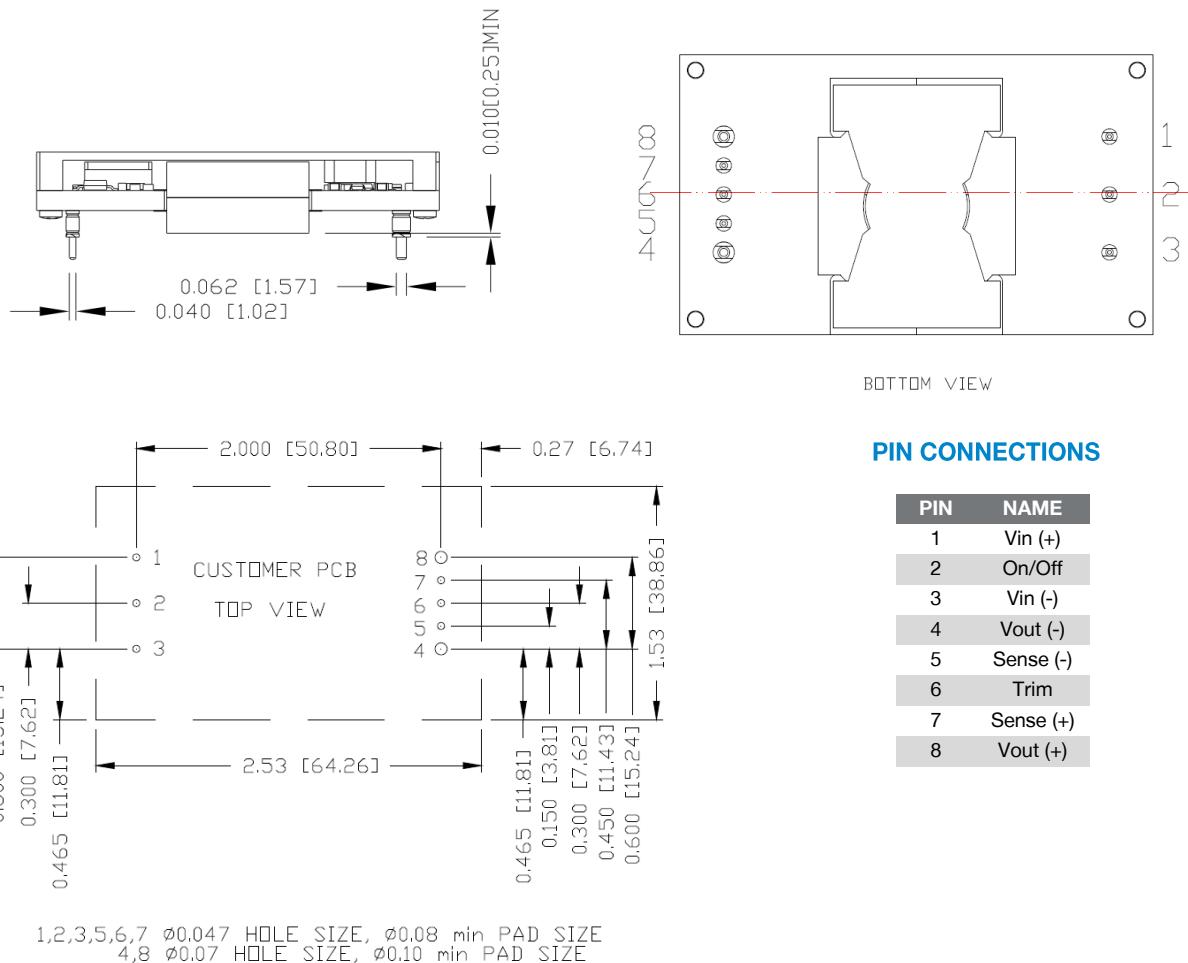


$$R_{trimdown} = \frac{V_{o\_req}}{12 - V_{o\_req}} - 1 [k\Omega]$$

Trim up test circuit




$$R_{trimup} = \frac{1 - 0.10332}{0.10332 - 1.24/V_{o\_req}} - 1 [k\Omega]$$


**Note:**  $V_{o\_req}$  = Desired (trimmed) output voltage [V]

#### Safety:

CSA certified to UL/IEC60950-1,2nd +A2 version  
CB certified to IEC60950-1,2nd +A2 version

## 17. MECHANICAL DIMENSIONS





**Notes:** This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

- 1) All Pins: Material - Copper Alloy;  
Finish - Tin plated
- 2) Undimensioned components are shown for visual reference only.
- 3) All dimensions in inches; Tolerances: x.xx +/- 0.02 in [0.51 mm]. x.xxxx +/- 0.010 in [0.25 mm].

### PIN CONNECTIONS

| PIN | NAME      |
|-----|-----------|
| 1   | Vin (+)   |
| 2   | On/Off    |
| 3   | Vin (-)   |
| 4   | Vout (-)  |
| 5   | Sense (-) |
| 6   | Trim      |
| 7   | Sense (+) |
| 8   | Vout (+)  |

For more information on these products consult: [tech.support@psbel.com](mailto:tech.support@psbel.com)

**NUCLEAR AND MEDICAL APPLICATIONS** - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

**TECHNICAL REVISIONS** - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Bel:

[0RQB-D0W12LG](#)